Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 097502    DOI: 10.1088/1674-1056/ac523e

Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures

Wenyu Huang(黄文宇)1, Cangmin Wang(王藏敏)1, Yichao Liu(刘艺超)1, Shaoting Wang(王绍庭)2, Weifeng Ge(葛威锋)1, Huaili Qiu(仇怀利)1, Yuanjun Yang(杨远俊)1,†, Ting Zhang(张霆)1,‡, Hui Zhang(张汇)3, and Chen Gao(高琛)4
1 School of Physics, Hefei University of Technology, Hefei 230009, China;
2 School of Microelectronics, Hefei University of Technology, Hefei 230009, China;
3 Hefei National Laboratory for Physical Sciences at Microscale(HFNL), University of Science and Technology of China, Hefei 230026, China;
4 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Because of the wide selectivity of ferromagnetic and ferroelectric (FE) components, electric-field (E-field) control of magnetism via strain mediation can be easily realized through composite multiferroic heterostructures. Here, an MgO-based magnetic tunnel junction (MTJ) is chosen rationally as the ferromagnetic constitution and a high-activity (001)-Pb(Mg$_{1/3}$Nb$_{2/3}$)$_{0.7}$Ti$_{0.3}$O$_{3}$ (PMN-0.3PT) single crystal is selected as the FE component to create a multiferroic MTJ/FE hybrid structure. The shape of tunneling magnetoresistance (TMR) versus in situ E-fields imprints the butterfly loop of the piezo-strain of the FE without magnetic-field bias. The E-field-controlled change in the TMR ratio is up to $-$0.27% without magnetic-field bias. Moreover, when a typical magnetic field ($\sim \pm 10$ Oe) is applied along the minor axis of the MTJ, the butterfly loop is changed significantly by the E-fields relative to that without magnetic-field bias. This suggests that the E-field-controlled junction resistance is spin-dependent and correlated with magnetization switching in the free layer of the MTJ. In addition, based on such a multiferroic heterostructure, a strain-gauge factor up to approximately 40 is achieved, which decreases further with a sign change from positive to negative with increasing magnetic fields. This multiferroic hybrid structure is a promising avenue to control TMR through E-fields in low-power-consumption spintronic and straintronic devices at room temperature.
Keywords:  tunneling magnetoresistance      magnetic tunnel junction (MTJ)      multiferroic heterostructure      magnetoelectric coupling  
Received:  16 November 2021      Revised:  11 January 2022      Accepted manuscript online:  07 February 2022
PACS:  75.85.+t (Magnetoelectric effects, multiferroics)  
  77.55.Nv (Multiferroic/magnetoelectric films)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52072102 and 11775224). It was also partially funded through the Open Foundation of the Hefei National Laboratory for Physical Sciences at the Microscale (Grant No. KF2020002). The authors greatly appreciate the beamlines BL07W, BL11U and BL12B-α at the National Synchrotron Radiation Laboratory (Grant No. NSRL) for multiferroic device fabrication and characterization. In particular, the authors would like to sincerely thank Xiao's group for providing MTJ samples.
Corresponding Authors:  Yuanjun Yang, Ting Zhang     E-mail:;

Cite this article: 

Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛) Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures 2022 Chin. Phys. B 31 097502

[1] Song X, Gao X S and Liu J M 2018 Acta Phys. Sin. 67 157512 (in Chinese)
[2] Arne B, Andrew D K and Hideo O 2012 Nat Mater 11 372
[3] Liu Y K, Yin Y W and Li X G 2013 Chin. Phys. B 22 087502
[4] Chen A T and Zhao Y G 2018 Acta Phys. Sin. 67 157513 (in Chinese)
[5] Tulapurkar A A, Suzuki Y, Fukushima A, Kubota H, Maehara H, Tsunekawa K, Djayaprawira D D, Watanabe N and Yuasa S 2005 Nature 438 339
[6] Hai P N, Ohya S, Tanaka M, Barnes S E and Maekaw S 2009 Nature 458 489
[7] Tezuka N, Oikawa S, Matsuura M, Sugimoto S, Nishimura K, Irisawa T, Nagamine Y and Tsunekawa K 2018 AIP Advances 8 055922
[8] Kanai S, Nakatani Y, Yamanouchi M, Ikeda S, Matsukura F and Ohno H 2013 Appl. Phys. Lett. 103 072408
[9] Grezes C, Ebrahimi F, Alzate J G, Cai X, Katine J A, Langer J, Ocker B, Khalili Amiri P and Wang K L 2016 Appl. Phys. Lett. 108 012403
[10] Yu B, Hu Z Q, Cheng Y X, Peng B, Zhou Z Y and Liu M 2018 Acta Phys. Sin. 67 157507 (in Chinese)
[11] Hu J M, Li Z, Chen L Q and Nan C W 2011 Nat. Commun. 2 553
[12] Peng Z L, Han X F, Zhao S F, Wei H X, Du G X and Zhan W S 2006 Acta Phys. Sin. 55 860 (in Chinese)
[13] Li Q Y, Zhang P H, Li H T, Lina Chen, Zhou K Y, Yan C J, Li L Y, Xu Y B, Zhang W X, Liu B, Meng H, Liu R H and Du Y W 2021 Chin. Phys. B 30 047504
[14] Roschewsky N, Schafer S, Hellman F and Nikitin V 2018 Appl. Phys. Lett. 112 232401
[15] Meyners D, Hofe T. von, Vieth M, Rührig M, Schmitt S and Quandt E 2009 J. Appl. Phys. 105 07C914
[16] Tavassolizadeh A, Rott K, Meier T, Quandt E, Hölscher H, Reiss G and Meyners D 2016 Sensors 16 1902
[17] Pertsev N A and Kohlstedt H 2009 Appl. Phys. Lett. 95 163504
[18] Li P, Chen A, Li D, Zhao Y, Zhang S, Yang L, Liu Y, Zhu M, Zhang H and Han X 2014 Adv. Mater. 26 4320
[19] Zhao Z, Jamali M, D'Souza N, Zhang D, Bandyopadhyay S, Atulasimha J and Wang J P 2016 Appl. Phys. Lett. 109 092403
[20] Naik V B, Meng H, Liu R S, Luo P, Yap S and Han G C 2014 Appl. Phys. Lett. 104 232401
[21] Fu Q W, Zhou K Y, Lina Chen L N, Xu Y B, Zhou T J, Wang D H, Chi K Q, Meng H, Liu B, Liu R H and Du Y W 2020 Chin. Phys. Lett. 37 117501
[22] He H, Zhao J T, Luo Z L, Yang Y J, Xu H, Hong B, Wang L X, Wang R X and Gao C 2016 Chin. Phys. Lett. 33 067502
[23] Chen A, Wen Y, Fang B, Zhao Y, Zhang Q, Chang Y, Li P, Wu H, Huang H, Lu Y, Zeng Z, Cai J, Han X, Wu T, Zhang X X and Zhao Y 2019 Nat. Commun. 10 243
[24] Yang Y, Luo Z, Wang S, Huang W, Wang G, Wang C, Yao Y, Li H, Wang Z, Zhou J, Dong Y, Guan Y, Tian Y, Feng C, Zhao Y, Gao C and Xiao G 2021 iScience 24 102734
[25] Herklotz A, Gai Z, Sharma Y, Huon A, Rus S F, Sun L, Shen J, Rack P D and Ward T Z 2018 Adv. Sci. 5 1800356
[26] Chen A T, Zhao Y G, Li P S, Zhang X, Peng R C, Huang H L, Zou L K, Zheng X L, Zhang S, Miao P X, Lu Y L, Cai J W and Nan C W 2016 Adv. Mater. 28 363
[27] Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F and Ohno H 2010 Nat. Mater. 9 721
[28] Kent A D 2010 Nat. Mater. 9 699
[29] Wang M, Zhang Y, Zhao X and Zhao W 2015 Micromachines 6 1023
[30] Khanal P, Zhou B, Andrade M, Dang Y, Davydov A, Habiboglu A, Saidian J, Laurie A, Wang J P, Gopman D B and Wang W 2021 Appl. Phys. Lett. 119 242404
[31] Liu Y, Zhang Z, Freitas P P and Martins J L 2003 Appl. Phys. Lett. 82 2871
[32] Liu H, Wang R, Guo P, Wen Z, Feng J, Wei H, Han X, Ji Y and Zhang S 2015 Sci. Rep. 5 18269
[33] Shen W, Mazumdar D, Zou X, Liu X, Schrag B D and Gang X 2006 Appl. Phys. Lett. 88 182508
[34] Lou J, Reed D, Liu M, Pettiford C and Sun N X 2009 IEEE MTTS Int. Microwave Symp. Dig. 33
[35] Schrag B D, Anguelouch A, Ingvarsson S, Xiao G, Lu Y, Trouilloud P L, Gupta A, Wanner R A, Gallagher W J, Rice P M and Parkin S S P 2000 Appl. Phys. Lett. 77 2373
[36] Stobiecki T, Kim C G, Kim C O, Hu Y K, Czapkiewicz M, Kanak J, Wrona J, Tsunoda M and Takahashi M 2004 J. Magn. Magn. Mater. 272 E1503
[37] Zhang W, Hao Q and Xiao G 2011 Phys. Rev. B 84 094446
[38] Chen J Y, Lau Y C, Coey J M D, Li M and Wang J P 2017 Sci. Rep. 7 42001
[39] Chen A, Zhao Y, Wen Y, Pan L, Li P and Zhang X X 2019 Sci. Adv. 5 5141
[40] Baibich M N, Broto J M, Fert A, Nguyen Van Dau F, Petroff F, Etienne P, Creuzet G, Friederich A and Chazelas J 1988 Phys. Rev. Lett. 61 2472
[41] Binasch G, Grüberg P, Saurenbach F and W Zinn 1989 Phys. Rev. B Condens. Matter. 39 4828
[42] Ziss D, Martín-Sánchez J, Lettner T, Halilovic A, Trevisi G, Trotta R, Rastelli A and Stangl J 2017 J. Appl. Phys. 121 135303
[43] Liu M, Li S, Obi O, Lou J, Rand S and Sun N X 2011 Appl. Phys. Lett. 98 222509
[44] Julliere M 1975 Phys. Lett. A 54 225
[45] Simmons J G 1963 J. Appl. Phys. 34 1793
[46] Hsu C J, Hockel J L and Carman G P 2012 Appl. Phys. Lett. 100 092902
[47] Zhu M, Zhou Z, Peng B, Zhao S, Zhang Y, Niu G, Ren W, Ye Z G, Liu Y and Liu M 2017 Adv. Funct. Mater. 27 1605598
[48] Klimov A, Tiercelin N, Dusch Y, Giordano S, Mathurin T, Pernod P, Preobrazhensky V, Churbanov A and Nikitov S 2017 Appl. Phys. Lett. 110 222401
[49] Window A L 1992 Strain Gauge Technology (Springer)
[50] Löhndorf M, Duenas T, Tewes M, Quandt E, Rührig M and Wecker J 2002 Appl. Phys. Lett. 81 313
[1] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[2] Voltage-controllable magnetic skyrmion dynamics for spiking neuron device applications
Ming-Min Zhu(朱明敏), Shu-Ting Cui(崔淑婷), Xiao-Fei Xu(徐晓飞), Sheng-Bin Shi(施胜宾), Di-Qing Nian(年迪青), Jing Luo(罗京), Yang Qiu(邱阳), Han Yang(杨浛), Guo-Liang Yu(郁国良), and Hao-Miao Zhou (周浩淼). Chin. Phys. B, 2022, 31(1): 018503.
[3] Magnetoelectric coupling effect of polarization regulation in BiFeO3/LaTiO3 heterostructures
Chao Jin(金超), Feng-Zhu Ren(任凤竹), Wei Sun(孙伟), Jing-Yu Li(李静玉), Bing Wang(王冰), and Qin-Fen Gu(顾勤奋). Chin. Phys. B, 2021, 30(7): 076105.
[4] Experiments and SPICE simulations of double MgO-based perpendicular magnetic tunnel junction
Qiuyang Li(李求洋), Penghe Zhang(张蓬鹤), Haotian Li(李浩天), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Chunjie Yan(晏春杰), Liyuan Li(李丽媛), Yongbing Xu(徐永兵), Weixin Zhang(张卫欣), Bo Liu(刘波), Hao Meng(孟浩), Ronghua Liu(刘荣华), and Youwei Du(都有为). Chin. Phys. B, 2021, 30(4): 047504.
[5] Tunneling magnetoresistance in ferromagnet/organic-ferromagnet/metal junctions
Yan-Qi Li(李彦琪), Hong-Jun Kan(阚洪君), Yuan-Yuan Miao(苗圆圆), Lei Yang(杨磊), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), Gui-Chao Hu(胡贵超). Chin. Phys. B, 2020, 29(1): 017303.
[6] Two-dimensional XSe2 (X=Mn, V) based magnetic tunneling junctions with high Curie temperature
Longfei Pan(潘龙飞), Hongyu Wen(文宏玉), Le Huang(黄乐), Long Chen(陈龙), Hui-Xiong Deng(邓惠雄), Jian-Bai Xia(夏建白), Zhongming Wei(魏钟鸣). Chin. Phys. B, 2019, 28(10): 107504.
[7] Voltage control of ferromagnetic resonance and spin waves
Xinger Zhao(赵星儿), Zhongqiang Hu(胡忠强), Qu Yang(杨曲), Bin Peng(彭斌), Ziyao Zhou(周子尧), Ming Liu(刘明). Chin. Phys. B, 2018, 27(9): 097505.
[8] Multiferroic and enhanced microwave absorption induced by complex oxide interfaces
Cuimei Cao(曹翠梅), Chunhui Dong(董春晖), Jinli Yao(幺金丽), Changjun Jiang(蒋长军). Chin. Phys. B, 2018, 27(1): 017503.
[9] Nonvolatile control of transport and magnetic properties in magnetoelectric heterostructures by electric field
Qian Li(李潜), Dun-Hui Wang(王敦辉), Qing-Qi Cao(曹庆琪), You-Wei Du(都有为). Chin. Phys. B, 2017, 26(9): 097502.
[10] Large tunable FMR frequency shift by magnetoelectric coupling in oblique-sputtered Fe52.5Co22.5B25.0/PZN-PT multiferroic heterostructure
Zhi-Peng Shi(时志鹏), Xiao-Min Liu(刘晓敏), Shan-Dong Li(李山东). Chin. Phys. B, 2017, 26(9): 097601.
[11] Spin-valley-dependent transport and giant tunneling magnetoresistance in silicene with periodic electromagnetic modulations
Yi-Man Liu(刘一曼), Huai-Hua Shao(邵怀华), Guang-Hui Zhou(周光辉), Hong-Guang Piao(朴红光), Li-Qing Pan(潘礼庆), Min Liu(刘敏). Chin. Phys. B, 2017, 26(12): 127303.
[12] Electrical control of magnetism in oxides
Cheng Song(宋成), Bin Cui(崔彬), Jingjing Peng(彭晶晶), Haijun Mao(毛海军), Feng Pan(潘峰). Chin. Phys. B, 2016, 25(6): 067502.
[13] Al-doping-induced magnetocapacitance in the multiferroic AgCrS2
Liu Rong-Deng (刘荣灯), He Lun-Hua (何伦华), Yan Li-Qin (闫丽琴), Wang Zhi-Cui (王志翠), Sun Yang (孙阳), Liu Yun-Tao (刘蕴韬), Chen Dong-Feng (陈东风), Zhang Sen (张森), Zhao Yong-Gang (赵永刚), Wang Fang-Wei (王芳卫). Chin. Phys. B, 2015, 24(12): 127507.
[14] Tunneling magnetoresistance based on a Cr/graphene/Cr magnetotunnel junction
Luan Gui-Ping (栾桂苹), Zhang Pei-Ran (张沛然), Jiao Na (焦娜), Sun Li-Zhong (孙立忠). Chin. Phys. B, 2015, 24(11): 117201.
[15] Colossal magnetoresistance in manganites and related prototype devices
Liu Yu-Kuai (刘愉快), Yin Yue-Wei (殷月伟), Li Xiao-Guang (李晓光). Chin. Phys. B, 2013, 22(8): 087502.
No Suggested Reading articles found!