Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 107301    DOI: 10.1088/1674-1056/24/10/107301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Influences of Pr and Ta doping concentration on the characteristic features of FTO thin film deposited by spray pyrolysis

Güven Turguta, Adem Koçyiğitb, Erdal Sönmezc
a Erzurum Technical University, Science Faculty, Department of Basic Sciences, Erzurum 25240, Turkey;
b Igdir University, Engineering Faculty, Department of Electrical Electronic Engineering, Igdir 7600, Turkey;
c Ataturk University, Kazım Karabekir Education Faculty, Department of Physics, Erzurum 25240, Turkey
Abstract  The Pr and Ta separately doped FTO (10 at.% F incorporated SnO2) films are fabricated via spray pyrolysis. The microstructural, topographic, optical, and electrical features of fluorine-doped TO (FTO) films are investigated as functions of Pr and Ta dopant concentrations. The x-ray diffraction (XRD) measurements reveal that all deposited films show polycrystalline tin oxide crystal property. FTO film has (200) preferential orientation, but this orientation changes to (211) direction with Pr and Ta doping ratio increasing. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) analyses show that all films have uniform and homogenous nanoparticle distributions. Furthermore, morphologies of the films depend on the ratio between Pr and Ta dopants. From ultraviolet-visible (UV-Vis) spectrophotometer measurements, it is shown that the transmittance value of FTO film decreases with Pr and Ta doping elements increasing. The band gap value of FTO film increases only at 1 at.% Ta doping level, it drops off with Pr and Ta doping ratio increasing at other doped FTO films. The electrical measurements indicate that the sheet resistance value of FTO film initially decreases with Pr and Ta doping ratio decreasing and then it increases with Pr and Ta doping ratio increasing. The highest value of figure of merit is obtained for 1 at.% Ta- and Pr-doped FTO film. These results suggest that Pr- and Ta-doped FTO films may be appealing candidates for TCO applications.
Keywords:  Pr-doped FTO      Ta-doped FTO      spray pyrolysis      tin oxide      thin films      double doping  
Received:  01 April 2015      Revised:  02 May 2015      Accepted manuscript online: 
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  78.20.-e (Optical properties of bulk materials and thin films)  
  78.68.+m (Optical properties of surfaces)  
Corresponding Authors:  Güven Turgut, Adem Koçyiğit     E-mail:  guventrgt@gmail.com;adem.kocyigit@igdir.edu.tr

Cite this article: 

Güven Turgut, Adem Koçyiğit, Erdal Sönmez Influences of Pr and Ta doping concentration on the characteristic features of FTO thin film deposited by spray pyrolysis 2015 Chin. Phys. B 24 107301

[1] Ellmer K 2012 Nat. Photon. 6 809
[2] Zhang S W, Fan G H, He M and Zhang T 2014 Chin. Phys. B 23 066301
[3] Nakao S, Hirose Y, Fukumura T and Hasegawa T 2014 Jpn. J. Appl. Phys. 53 05FX04
[4] Van Daal H J 1968 Solid State Commun. 6 5
[5] Fonstad C G and Rediker R H 1971 J. Appl. Phys. 42 2911
[6] Lee S W, Kim Y W and Chen H 2001 Appl. Phys. Lett. 78 350
[7] Turgut G, Sonmez E and Duman S 2015 Mater. Sci. Semicond. Process. 30 233
[8] Mahato S and Kar A K 2015 J. Electroanalytical. Chem. 742 23
[9] Slassi A 2015 Mater. Sci. Semicond. Process. 32 100
[10] Zhi X, Zhao G, Zhu T and Li Y 2008 Surf. Interface Anal. 40 67
[11] Lee G H 2013 Mater. Trans. 54 2159
[12] Zhou Q, Wu S and Miao D H 2011 Adv. Mater. Res. 150 1043
[13] Luo Z H, Tang D S, Hai K, Yu F, Chen Y Q, He X W, Peng Y H, Yuan H J and Yuan Y 2010 Chin. Phys. B 19 026102
[14] Moholkar A V, Pawar S M, Rajpure K Y, Almari S N, Patil P S and Bhosale C H 2008 Sol. Energy Mater. Sol. Cells 92 1439
[15] Kumar R, Khanna A and Sastry V S 2012 Vacuum 86 1380
[16] Ravaro L P, Scalvi L V A and Boratto M H 2015 Appl. Phys. A: Mater. Sci. Process. 118 1419
[17] Elangovan E and Ramamurthi K 2004 Appl. Surf. Sci. 249 183
[18] Turgut G, Tatar D, Duzgun B 2012 EÜFBED-Erzincan Univ. J. Sci. Technol. 5 13
[19] Gordillo G, Moreno L C, Cruz W and Teheran P 1994 Thin Solid Films 252 61
[20] Smith A, Laurent J M, Smith D S, Bonnet J P and Clemente R R 1995 Thin Solid Films 266 20
[21] Agashe C, Takwale M G, Bhide V G, Mahamuni S and Kulkarni S K 1991 J. Appl Phys. 70 7382
[22] Elangovan E and Ramamurthi K 2005 Thin Solid Films 476 231
[23] Babar A R, Shinde S S, Moholkar A V, Bhosale C H, Kim J H and Rajpure K Y 2011 J. Alloys Compd. 509 3108
[24] Chacko S, Philip N S, Gopchandran K G, Koshy P and Vaidyan V K 2008 Appl. Surf. Sci. 254 2179
[25] Li W Q, Ma S Y, Li Y F, Li X B, Wang C Y, Yang X H, Cheng L, Mao Y Z, Luo J, Gengzang D J, Wan G X and Xu X L 2014 J. Alloys Compd. 605 80
[26] Moholkar A V, Pawar S M, Rajpure K Y and Bhosale C H 2007 Mater. Lett. 61 3030
[27] Turgut G, Keskenler E F, Aydın S, Sonmez E, Dogan S, Duzgun B and Ertugrul M 2013 Superlattices and Microstructures 56 107
[28] Battal A, Tatar D, Kocyigit A and Duzgun B 2014 J. Ovonic Res. 10 23
[29] Serin T, Yildiz A, Serin N, Yildirim N, Ozyurt F and Kasap M 2010 J. Electron. Mater. 39 1152
[30] Cho H J, Seo Y J, Kim G W, Park K Y, Heo S N and Koo B H 2013 Mater. Res. Soc. Korea 23 435
[31] Aouaj M A, Diaz R, Belayachi A, Rueda F and Abd-Lefdil M 2009 Mater. Res. Bull. 44 1458
[32] Turgut G, Keskenler E F, Aydın S, Yılmaz M, Doğan S and Düzgün B 2013 Phys. Scr. 87 035602
[33] Dhanam M, Manoj P K, Rajeev R and Prabhu R 2005 J. Cryst. Growth 280 425
[34] Turgut G, Sonmez E, Aydın S, Dilber R and Turgut U 2014 Ceram. Int. 40 12891
[35] Filho F M, Simoes A Z, Ries A, Souza E C, Perazolli L, Cilense M, Longo E and Varela J A 2005 Ceram. Int. 31 399
[36] Nakao S, Naoomi Y, Hitosugi T, Shimada T and Hasegawa T 2010 Appl. Phys. Express 3 031102
[37] Elangovan E, Shivashankar S A and Ramamurthi K 2005 J. Crystal Growth 276 215
[38] Turgut G, Tatar D and Düzgün B 2013 Asian J. Chem. 25 245
[39] Ravichandran K, Muruganantham G, Sakthivel B and Philominathan P 2009 J. Ovonic Res. 5 63
[40] Keskenler E F, Turgut G and Dogan S 2012 Superlattices and Microstructures 52 107
[41] Kim H, Auyeung R C Y and Piqué A 2008 Thin Solid Films 516 5052
[42] Batzill M and Diebold U 2005 Prog. Surf. Sci. 79 47
[43] Burstein E 1954 Phys. Rev. 93 632
[44] Pejova B 2010 Mater. Chem. Phys. 119 367
[45] Turgut G and Sonmez E 2014 Superlattices and Microstructures 69 175
[46] Mahr H 1962 Phys. Rev. 125 1510
[47] Keskenler E F, Turgut G, Aydın S, Dilber R and Turgut U 2013 J. Ovonic Res. 9 61
[48] Thangaraju B 2002 Thin Solid Films 402 71
[1] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[2] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
[3] Effect of Mo doping on phase change performance of Sb2Te3
Wan-Liang Liu(刘万良), Ying Chen(陈莹), Tao Li(李涛), Zhi-Tang Song(宋志棠), and Liang-Cai Wu(吴良才). Chin. Phys. B, 2021, 30(8): 086801.
[4] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[5] High-performing silicon-based germanium Schottky photodetector with ITO transparent electrode
Zhiwei Huang(黄志伟), Shaoying Ke(柯少颖), Jinrong Zhou(周锦荣), Yimo Zhao(赵一默), Wei Huang(黄巍), Songyan Chen(陈松岩), and Cheng Li(李成). Chin. Phys. B, 2021, 30(3): 037303.
[6] Molecular beam epitaxy growth of iodide thin films
Xinqiang Cai(蔡新强), Zhilin Xu(徐智临), Shuai-Hua Ji(季帅华), Na Li(李娜), and Xi Chen(陈曦). Chin. Phys. B, 2021, 30(2): 028102.
[7] Synthesis and thermoelectric properties of Bi-doped SnSe thin films
Jun Pang(庞军), Xi Zhang(张析), Limeng Shen(申笠蒙), Jiayin Xu(徐家胤), Ya Nie(聂娅), and Gang Xiang(向钢). Chin. Phys. B, 2021, 30(11): 116302.
[8] Scalable fabrication of Bi2O2Se polycrystalline thin film for near-infrared optoelectronic devices applications
Bin Liu(刘斌) and Hong Zhou(周洪). Chin. Phys. B, 2021, 30(10): 106803.
[9] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
[10] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[11] Optical and electrical properties of InGaZnON thin films
Jian Ke Yao(姚建可), Fan Ye(叶凡), Ping Fan(范平). Chin. Phys. B, 2020, 29(1): 018105.
[12] Heat treatment on phase evolution of Bi-2223 precursor powder prepared by spray pyrolysis method
Li-Jun Cui(崔利军), Ping-Xiang Zhang(张平祥), Jin-Shan Li(李金山), Guo Yan(闫果), Yong Feng(冯勇), Xiang-Hong Liu(刘向宏), Jian-Feng Li(李建峰), Xi-Feng Pan(潘熙峰), Fan Yang(杨帆), Sheng-Nan Zhang(张胜楠), Xiao-Bo Ma(马晓波), Guo-Qing Liu(刘国庆). Chin. Phys. B, 2019, 28(4): 047401.
[13] Influence of low-temperature sulfidation on the structure of ZnS thin films
Shuzhen Chen(陈书真), Ligang Song(宋力刚), Peng Zhang(张鹏), Xingzhong Cao(曹兴忠), Runsheng Yu(于润升), Baoyi Wang(王宝义), Long Wei(魏龙), Rengang Zhang(张仁刚). Chin. Phys. B, 2019, 28(2): 024214.
[14] Electrical transport and optical properties of Cd3As2 thin films
Yun-Kun Yang(杨运坤), Fa-Xian Xiu(修发贤), Feng-Qiu Wang(王枫秋), Jun Wang(王军), Yi Shi(施毅). Chin. Phys. B, 2019, 28(10): 107502.
[15] Thickness dependent manipulation of uniaxial magnetic anisotropy in Fe-thin films by oblique deposition
Qeemat Gul, Wei He(何为), Yan Li(李岩), Rui Sun(孙瑞), Na Li(李娜), Xu Yang(杨旭), Yang Li(李阳), Zi-Zhao Gong(弓子召), ZongKai Xie(谢宗凯), Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2018, 27(9): 097504.
No Suggested Reading articles found!