Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 094205    DOI: 10.1088/1674-1056/24/9/094205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Vacuum induced transparency and slow light phenomena in a two-level atomic ensemble controlled by a cavity

Guo Yu-Jie (郭玉杰)a b, Nie Wen-Jie (聂文杰)c
a Department of Physics, Tsinghua University, Beijing 100084, China;
b Beijing Computational Science Research Center, Beijing 100094, China;
c Department of Applied Physics, East China Jiaotong University, Nanchang 330013, China
Abstract  

We study the optical properties of a two-level atomic ensemble controlled by a high-finesse cavity. Even though the cavity is initially in the vacuum state in the absence of external driving, the probe response of the atomic ensemble can be dramatically modified. When the collectively enhanced atom-cavity coupling is strong enough and the cavity decay rate is much smaller than the atomic damping rate, an electromagnetically induced transparency-like coherent phenomenon emerges with a dip absorption for the response of the two-level atoms in the cavity without driving, and thus is called vacuum induced transparency. We also show the slow light with very low group velocity in such an atomic ensemble.

Keywords:  electromagnetically induced transparency      two-level atomic ensemble      vacuum      slow light  
Received:  26 December 2014      Revised:  13 March 2015      Accepted manuscript online: 
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11304010).

Corresponding Authors:  Guo Yu-Jie     E-mail:  guoyujie@csrc.ac.cn

Cite this article: 

Guo Yu-Jie (郭玉杰), Nie Wen-Jie (聂文杰) Vacuum induced transparency and slow light phenomena in a two-level atomic ensemble controlled by a cavity 2015 Chin. Phys. B 24 094205

[1] Harris S E 1997 Phys. Today 50(7) 36
[2] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[3] Harris S E, Field J E and Imamoğlu A 1990 Phys. Rev. Lett. 64 1107
[4] Boller K J, Imamolu A and Harris S E 1991 Phys. Rev. Lett. 66 2593
[5] Tanji-Suzuki H, Chen Wenlan, Landig R, Simon J and Vuletić V 2011 Science 333 1266
[6] Field J E 1993 Phys. Rev. A 47 5064
[7] Schwartz S E and Tan T Y 1967 Appl. Phys. Lett. 10 4
[8] Boyd R W, Raymer M G, Narum P and Harter D J 1981 Phys. Rev. A 24 411
[9] Agarwal G S and Dey T N 2009 Laser & Photon. Rev. 3 287
[10] Harris S E, Field J E and Kasapi A 1992 Phys. Rev. A 46 R29
[11] Xiao M, Li Y Q, Jin S Z and Gea-Banacloche J 1995 Phys. Rev. Lett. 74 666
[12] Kasapi A, Jain M, Yin G Y and Harris S E 1995 Phys. Rev. Lett. 74 2447
[13] Budker D, Kimball D F, Rochester S M and Yashchuk V V 1999 Phys. Rev. Lett. 83 1767
[14] Bigelow M S, Lepeshkin N N and Boyd R W 2003 Phys. Rev. Lett. 90 113903
[15] Bigelow M S, Lepeshkin N N and Boyd R W 2003 Science 301 200
[16] Baldit E, Bencheikh K, Monnier P, Levenson J A and Rouget V 2005 Phys. Rev. Lett. 95 143601
[17] Agarwal G S and Dey T N 2006 Phys. Rev. A 73 043809
[18] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[19] Sun C P, Li Y and Liu X F 2003 Phys. Rev. Lett. 91 147903
[20] Li Y and Sun C P 2004 Phys. Rev. A 69 051802(R)
[21] Jin G R, Zhang P, Liu Y X and Sun C P 2003 Phys. Rev. B 68 134301
[22] Agarwal G S 1984 Phys. Rev. Lett. 53 1732
[23] Walls D F and Milburn G J 2008 Quantum Optics (2nd Edn.) (Berlin: Springer)
[24] Bernardot F, Nussenzveig P, Brune M, Raimond J M and Haroche S 1992 Europhys. Lett. 17 33
[25] Boca A, Miller R, Birnbaum K M, Boozer A D, McKeever J and Kimble H J 2004 Phys. Rev. Lett. 93 233603
[26] Zhu Y F, Gauthier D J, Morin S E, Wu Q L, Carmichael H J and Mossberg T W 1990 Phys. Rev. Lett. 64 2499
[27] Rice P R and Brecha R J 1996 Opt. Commun. 126 230
[28] Sansonetti J E and Martin W C 2005 J. Phys. Chem. Ref. Data 34 1559
[29] Boyd R W 2008 Nolinear Optics (3rd Edn.) (New York: Elsevier)
[1] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[2] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[3] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[4] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[5] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[6] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[7] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[8] Vacuum current-carrying tribological behavior of MoS2-Ti films with different conductivities
Lu-Lu Pei(裴露露), Peng-Fei Ju(鞠鹏飞), Li Ji(吉利), Hong-Xuan Li(李红轩),Xiao-Hong Liu(刘晓红), Hui-Di Zhou(周惠娣), and Jian-Min Chen(陈建敏). Chin. Phys. B, 2022, 31(6): 066201.
[9] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[10] An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening
Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. Chin. Phys. B, 2022, 31(2): 024201.
[11] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[12] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[13] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[14] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[15] Vacuum-gap-based lumped element Josephson parametric amplifier
Sishi Wu(吴思诗), Dengke Zhang(张登科), Rui Wang(王锐), Yulong Liu(刘玉龙), Shuai-Peng Wang(王帅鹏), Qichun Liu(刘其春), J S Tsai(蔡兆申), and Tiefu Li(李铁夫). Chin. Phys. B, 2022, 31(1): 010306.
No Suggested Reading articles found!