1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathmatics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; 2 National University of Defence Technology, Changsha 410073, China; 3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract We have presented a high resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency (EIT). The EIT spectrum in the -type configuration is usually companied by a double resonance optical pumping (DROP) due to the strong optical coupling between the two upper states, leading to the spectral lines seriously deformed and widely broadened for complex relaxation processes in DROP. Here we demonstrate a high resolution spectroscopy by far-detuning EIT for in magnetic fields. The method of far-detuning eliminates the relaxation in DROP to the most extent and decreases the spectral linewidth from more than 20 MHz down to its natural linewidth limit (6 MHz). The deformation of the spectral lines also disappears and the observed spectra are well in accordance with the theoretical calculation. Our work shows that far-detuning EIT is a reliable high resolution spectroscopic method when the relaxation in DROP cannot be neglected, especially for the case of transition to low excited states.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074388 and 12004393).
Corresponding Authors:
Hong-Ping Liu
E-mail: liuhongping@wipm.ac.cn
Cite this article:
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平) High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency 2022 Chin. Phys. B 31 123201
[1] Demtröder W 2003 Laser spectroscopy (Berlin: Springer-Verlag) [2] Zhang X B and Ye J 2016 Natl. Sci. Rev.3 189 [3] Bourzeix S, de Beauvoir B, Nez F, Plimmer M D, de Tomasi F, Julien L, Biraben F and Stacey D N 1996 Phys. Rev. Lett.76 384 [4] Pappas P G, Burns M M, Hinshelwood D D, Feld M S and Murnick D E 1980 Phys. Rev. A21 1955 [5] Brandenberger J R 1989 Phys. Rev. A39 64 [6] Yang B D, Gao J, Liang Q B, Wang J, Zhang T C and Wang J M 2011 Chin. Phys. B20 044202 [7] Zhao J, Zhu X, Zhang L, Feng Z, Li C and Jia S 2000 Opt. Express17 15821 [8] Moon H S, Lee L and Kim J B 2008 Opt. Express16 12163 [9] Moon H S and Noh H R 2012 J. Opt. Soc. Am. B29 1557 [10] Hamid R, Çetintaş M and Çelik M 2003 Opt. Commun.224 247 [11] Hamid R, Çetintaş M and Çelik M 2004 Phys. Rev. A70 025805 [12] Harris S E 1997 Phys. Today50 36 [13] Lezama A, Barreiro S and Akulshin A M 1999 Phys. Rev. A59 4732 [14] Boller K J, Imamoglu A and Harris S E 1991 Phys. Rev. Lett.66 2593 [15] Stwalley W C and Wang H 1999 J. Mol. Spectrosc.195 194 [16] Tao C, Richmond C A, Mukarakate C, Kable S H, Bacskay G B, Brown E C, Dawes R, Lolur P and Reid S A 2012 J. Chem. Phys.137 104307 [17] Sunahori F X, Nagarajan R and Clouthier D J 2015 J. Chem. Phys.143 224308 [18] Ip P C F, Bernath P F and Field R W 1981 J. Mol. Spectrosc.89 53 [19] Nishiyama A, Yoshida S, Nakajima Y, Sasada H, Nakagawa K, Onae A and Minoshima K 2016 Opt. Express24 25894 [20] Ishiwata T, Tokunaga A, Shinzawa T and Tanaka I 1984 J. Mol. Spectrosc.108 79 [21] Gea-Banacloche J, Li Y, Jin S and Xiao M 1995 Phys. Rev. A51 576 [22] Mondal S, Ghosh A, Islam K, Bhattacharyya D and Bandyopadhyay A 2018 Chin. Phys. B27 094204 [23] Noh H R and Moon H S 2012 Phys. Rev. A85 1 [24] Ray A, Sabir Ali M and Chakrabarti A 2013 Euro. Phys. J. D67 78 [25] Fulton D J, Moseley R R, Shepherd S, Sinclair B D and Dunn M H 1995 Opt. Commun.116 231 [26] Bhushan S, Chauhan V S, M D and Easwaran R K 2019 Phys. Lett. A383 125885 [27] Bao S, Yang W, Zhang H, Zhang L, Zhao J and Jia S 2015 J. Phys. Soc. Jpn.84 104301 [28] Bao S, Zhang H, Zhou J, Zhang L, Zhao J, Xiao L and Jia S 2016 Phys. Rev. A94 043822 [29] Naber J, Spreeuw R, Tauschinsky A and van Linden van den Heuvell B 2017 SciPost Phys.2 015 [30] Cheng H, Wang H M, Zhang S S, Xin P P, Luo J and Liu H P 2017 Opt. Express25 33575 [31] Zhang L, Bao S, Zhang H, Raithel G, Zhao J, Xiao L and Jia S 2018 Opt. Express26 29931 [32] Wang H M, Cheng H, Zhang S S, Xin P P, Xu Z S and Liu H P 2018 Chin. Phys. B27 094205 [33] Cheng H, Wang H M, Zhang S S, Xin P P, Luo J and Liu H P 2017 Chin. Phys. B26 074204 [34] Moon H S and Noh H R 2011 Phys. Rev. A84 033821 [35] Moon H S and Noh H R 2011 J. Phys. B44 055004 [36] Yuan J, Dong S, Wang L, Xiao L and Jia S 2020 Laser Phys.30 025201 [37] Moon H S, Lee L and Kim J B 2007 J. Opt. Soc. Am. B24 2157 [38] Moon H S, Lee W K, Lee L and Kim J B 2004 Appl. Phys. Lett.85 3965 [39] Failache H, Valente P, Ban G, Lorent V and Lezama A 2003 Phys. Rev. A67 043810 [40] Das B C, Bhattacharyya D, Das A, Chakrabarti S and De S 2016 J. Chem. Phys.145 224312 [41] Kim K, Kwon M, Park H D, Moon H S, Rawat H S, An K and Kim J B 2001 J. Phys. B34 4801 [42] Kim S, Moon H, Kim K and Kim J 2003 Phys. Rev. A68 063813 [43] Brazhnikov D V, Taichenachev A V and Yudin V I 2011 Euro. Phys. J. D63 315 [44] Dey S, Mitra S, Ghosh P N and Ray B 2015 Optik126 2711 [45] Rehman H U, Mohsin M Q, Noh H R and Kim J T 2016 Opt. Commun.381 127 [46] Yu H, Kim J D, Jung T Y and Kim J B 2012 J. Korean Phys. Soc.61 1227 [47] Wang H M, Xu Z S, Ma S C, Cai M H, You S H and Liu H P 2019 Opt. Lett.44 5816
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.