Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 123201    DOI: 10.1088/1674-1056/ac6862

High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency

Zi-Shan Xu(徐子珊)1,2, Han-Mu Wang(王汉睦)2, Ming-Hao Cai(蔡明皓)1,3, Shu-Hang You(游书航)1,3, and Hong-Ping Liu(刘红平)1,3,†
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathmatics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China;
2 National University of Defence Technology, Changsha 410073, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We have presented a high resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency (EIT). The EIT spectrum in the $\Xi$-type configuration is usually companied by a double resonance optical pumping (DROP) due to the strong optical coupling between the two upper states, leading to the spectral lines seriously deformed and widely broadened for complex relaxation processes in DROP. Here we demonstrate a high resolution spectroscopy by far-detuning EIT for $^{87}\rm{Rb}$ $\rm{5S_{1/2}\rightarrow5P_{3/2}\rightarrow5D_{5/2}}$ in magnetic fields. The method of far-detuning eliminates the relaxation in DROP to the most extent and decreases the spectral linewidth from more than 20 MHz down to its natural linewidth limit (6 MHz). The deformation of the spectral lines also disappears and the observed spectra are well in accordance with the theoretical calculation. Our work shows that far-detuning EIT is a reliable high resolution spectroscopic method when the relaxation in DROP cannot be neglected, especially for the case of transition to low excited states.
Keywords:  Zeeman      high resolution spectroscopy      electromagnetically induced transparency      off-resonance  
Received:  01 March 2022      Revised:  01 April 2022      Accepted manuscript online:  20 April 2022
PACS:  32.70.Cs (Oscillator strengths, lifetimes, transition moments)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
  32.10.Fn (Fine and hyperfine structure)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074388 and 12004393).
Corresponding Authors:  Hong-Ping Liu     E-mail:

Cite this article: 

Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平) High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency 2022 Chin. Phys. B 31 123201

[1] Demtröder W 2003 Laser spectroscopy (Berlin: Springer-Verlag)
[2] Zhang X B and Ye J 2016 Natl. Sci. Rev. 3 189
[3] Bourzeix S, de Beauvoir B, Nez F, Plimmer M D, de Tomasi F, Julien L, Biraben F and Stacey D N 1996 Phys. Rev. Lett. 76 384
[4] Pappas P G, Burns M M, Hinshelwood D D, Feld M S and Murnick D E 1980 Phys. Rev. A 21 1955
[5] Brandenberger J R 1989 Phys. Rev. A 39 64
[6] Yang B D, Gao J, Liang Q B, Wang J, Zhang T C and Wang J M 2011 Chin. Phys. B 20 044202
[7] Zhao J, Zhu X, Zhang L, Feng Z, Li C and Jia S 2000 Opt. Express 17 15821
[8] Moon H S, Lee L and Kim J B 2008 Opt. Express 16 12163
[9] Moon H S and Noh H R 2012 J. Opt. Soc. Am. B 29 1557
[10] Hamid R, Çetintaş M and Çelik M 2003 Opt. Commun. 224 247
[11] Hamid R, Çetintaş M and Çelik M 2004 Phys. Rev. A 70 025805
[12] Harris S E 1997 Phys. Today 50 36
[13] Lezama A, Barreiro S and Akulshin A M 1999 Phys. Rev. A 59 4732
[14] Boller K J, Imamoglu A and Harris S E 1991 Phys. Rev. Lett. 66 2593
[15] Stwalley W C and Wang H 1999 J. Mol. Spectrosc. 195 194
[16] Tao C, Richmond C A, Mukarakate C, Kable S H, Bacskay G B, Brown E C, Dawes R, Lolur P and Reid S A 2012 J. Chem. Phys. 137 104307
[17] Sunahori F X, Nagarajan R and Clouthier D J 2015 J. Chem. Phys. 143 224308
[18] Ip P C F, Bernath P F and Field R W 1981 J. Mol. Spectrosc. 89 53
[19] Nishiyama A, Yoshida S, Nakajima Y, Sasada H, Nakagawa K, Onae A and Minoshima K 2016 Opt. Express 24 25894
[20] Ishiwata T, Tokunaga A, Shinzawa T and Tanaka I 1984 J. Mol. Spectrosc. 108 79
[21] Gea-Banacloche J, Li Y, Jin S and Xiao M 1995 Phys. Rev. A 51 576
[22] Mondal S, Ghosh A, Islam K, Bhattacharyya D and Bandyopadhyay A 2018 Chin. Phys. B 27 094204
[23] Noh H R and Moon H S 2012 Phys. Rev. A 85 1
[24] Ray A, Sabir Ali M and Chakrabarti A 2013 Euro. Phys. J. D 67 78
[25] Fulton D J, Moseley R R, Shepherd S, Sinclair B D and Dunn M H 1995 Opt. Commun. 116 231
[26] Bhushan S, Chauhan V S, M D and Easwaran R K 2019 Phys. Lett. A 383 125885
[27] Bao S, Yang W, Zhang H, Zhang L, Zhao J and Jia S 2015 J. Phys. Soc. Jpn. 84 104301
[28] Bao S, Zhang H, Zhou J, Zhang L, Zhao J, Xiao L and Jia S 2016 Phys. Rev. A 94 043822
[29] Naber J, Spreeuw R, Tauschinsky A and van Linden van den Heuvell B 2017 SciPost Phys. 2 015
[30] Cheng H, Wang H M, Zhang S S, Xin P P, Luo J and Liu H P 2017 Opt. Express 25 33575
[31] Zhang L, Bao S, Zhang H, Raithel G, Zhao J, Xiao L and Jia S 2018 Opt. Express 26 29931
[32] Wang H M, Cheng H, Zhang S S, Xin P P, Xu Z S and Liu H P 2018 Chin. Phys. B 27 094205
[33] Cheng H, Wang H M, Zhang S S, Xin P P, Luo J and Liu H P 2017 Chin. Phys. B 26 074204
[34] Moon H S and Noh H R 2011 Phys. Rev. A 84 033821
[35] Moon H S and Noh H R 2011 J. Phys. B 44 055004
[36] Yuan J, Dong S, Wang L, Xiao L and Jia S 2020 Laser Phys. 30 025201
[37] Moon H S, Lee L and Kim J B 2007 J. Opt. Soc. Am. B 24 2157
[38] Moon H S, Lee W K, Lee L and Kim J B 2004 Appl. Phys. Lett. 85 3965
[39] Failache H, Valente P, Ban G, Lorent V and Lezama A 2003 Phys. Rev. A 67 043810
[40] Das B C, Bhattacharyya D, Das A, Chakrabarti S and De S 2016 J. Chem. Phys. 145 224312
[41] Kim K, Kwon M, Park H D, Moon H S, Rawat H S, An K and Kim J B 2001 J. Phys. B 34 4801
[42] Kim S, Moon H, Kim K and Kim J 2003 Phys. Rev. A 68 063813
[43] Brazhnikov D V, Taichenachev A V and Yudin V I 2011 Euro. Phys. J. D 63 315
[44] Dey S, Mitra S, Ghosh P N and Ray B 2015 Optik 126 2711
[45] Rehman H U, Mohsin M Q, Noh H R and Kim J T 2016 Opt. Commun. 381 127
[46] Yu H, Kim J D, Jung T Y and Kim J B 2012 J. Korean Phys. Soc. 61 1227
[47] Wang H M, Xu Z S, Ma S C, Cai M H, You S H and Liu H P 2019 Opt. Lett. 44 5816
[1] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[2] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[3] Theoretical calculations on Landé $g$-factors and quadratic Zeeman shift coefficients of $n$s$n$p $^{3} {P}^{o}_{0}$ clock states in Mg and Cd optical lattice clocks
Benquan Lu(卢本全) and Hong Chang(常宏). Chin. Phys. B, 2023, 32(1): 013101.
[4] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[5] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[6] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[7] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[8] Theoretical calculation of the quadratic Zeeman shift coefficient of the 3P0o clock state for strontium optical lattice clock
Benquan Lu(卢本全), Xiaotong Lu(卢晓同), Jiguang Li(李冀光), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(4): 043101.
[9] An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening
Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. Chin. Phys. B, 2022, 31(2): 024201.
[10] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[11] Formation of high-density cold molecules via electromagnetic trap
Ya-Bing Ji(纪亚兵), Bin Wei(魏斌), Heng-Jiao Guo(郭恒娇), Qing Liu(刘青), Tao Yang(杨涛), Shun-Yong Hou(侯顺永), and Jian-Ping Yin(印建平). Chin. Phys. B, 2022, 31(10): 103201.
[12] High-resolution three-dimensional atomic microscopy via double electromagnetically induced transparency
Abdul Wahab. Chin. Phys. B, 2021, 30(9): 094202.
[13] An effective pumping method for increasing atomic utilization in a compact cold atom clock
Xin-Chuan Ouyang(欧阳鑫川), Bo-Wen Yang(杨博文), Jian-Liao Deng(邓见辽), Jin-Yin Wan(万金银), Ling Xiao(肖玲), Hang-Hang Qi(亓航航), Qing-Qing Hu(胡青青), and Hua-Dong Cheng(成华东). Chin. Phys. B, 2021, 30(8): 083202.
[14] Evaluation of second-order Zeeman frequency shift in NTSC-F2
Jun-Ru Shi(施俊如), Xin-Liang Wang(王心亮), Yang Bai(白杨), Fan Yang(杨帆), Yong Guan(管勇), Dan-Dan Liu(刘丹丹), Jun Ruan(阮军), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2021, 30(7): 070601.
[15] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
No Suggested Reading articles found!