Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 024201    DOI: 10.1088/1674-1056/ac2d19
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening

Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai
Vinh University, 182 Le Duan Street, Vinh City, Vietnam
Abstract  We present an analytical model for cross-Kerr nonlinear coefficient in a four-level N-type atomic medium under Doppler broadening. The model is applied to 87Rb atoms to analyze the dependence of the cross-Kerr nonlinear coefficient on the external light field and the temperature of atomic vapor. The analysis shows that in the absence of electromagnetically induced transparency (EIT) the cross-Kerr nonlinear coefficient is zero, but it is significantly enhanced when the EIT is established. It means that the cross-Kerr effect can be turned on/off when the external light field is on or off. Simultaneously, the amplitude and the sign of the cross-Kerr nonlinear coefficient are easily changed according to the intensity and frequency of the external light field. The amplitude of the cross-Kerr nonlinear coefficient remarkably decreases when the temperature of atomic medium increases. The analytical model can be convenient to fit experimental observations and applied to photonic devices.
Keywords:  electromagnetically induced transparency      Kerr nonlinear effect      Doppler effect  
Received:  23 April 2021      Revised:  23 August 2021      Accepted manuscript online:  06 October 2021
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.65.-k (Nonlinear optics)  
Fund: This work was supported by Vietnam's Ministry of Education and Training under Grant No. B2018-TDV-01SP.
Corresponding Authors:  Le Van Doai     E-mail:  doailv@vinhuni.edu.vn

Cite this article: 

Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening 2022 Chin. Phys. B 31 024201

[1] Boyd R W 2008 Nonlinear Optics 3ed (San Diego:Academic)
[2] Phuong L T M, Doai L V, Khoa D X and Bang N H 2018 International J. Opt. 2018 7260960
[3] Tikhonenko V, Christou J and Luther-Davies B 1996 Phys. Rev. Lett. 76 2698
[4] Li Y and Xiao M 1996 Opt. Lett. 21 1064
[5] Schmidt H and Imamoglu A 1998 Opt. Lett. 23 1007
[6] Joshi A and Xiao M 2005 Phys. Rev. A 72 062319
[7] Lukin M D and Imamoglu A 2000 Phys. Rev. Lett. 84 1419
[8] Sinatra A, Roch J F, Vigneron K, Grelu P, Poizat J P, Wang K and Grangier P 1998 Phys. Rev. A 57 2980
[9] Cao Q T, Wang H, Dong C H, Jing H and Liu R S 2017 Phys. Rev. Lett. 118 033901
[10] Huang R, Miranowicz A, Liao J Q, Nori F and Jing H 2018 Phys. Rev. Lett. 121 153601
[11] Harris S E 1997 Phys. Today 50 36
[12] Bang N H, Doai L V and Khoa D X 2019 Comm. Phys. 28 1
[13] Wang H, Goorskey D and Xiao M 2001 Phys. Rev. Lett. 87 073601
[14] Sahrai M, Asadpour S H and Sadighi R 2010 J. Nonlinear Opt. Phys. Mat. 19 503
[15] Yan X, Wang L, Yin B and Song J 2011 Optik 122 986
[16] Sheng J, Yang X, Wu H and Xiao M 2011 Phys. Rev. A 84 053820
[17] Khoa D X, Doai L V, Son D H and Bang N H 2014 J. Opt. Soc. Am. B 31 1330
[18] Hamedi H R, Gharamaleki A H and Sahrai M 2016 App. Opt. 55 5892
[19] Bang N H, Khoa D X, Son D H and Doai L V 2019 J. Opt. Soc. Am. B 36 3151
[20] Schmidt H and Imamogdlu A 1996 Opt. Lett. 21 1936
[21] Kang H and Zhu Y 2003 Phys. Rev. Lett. 91 093601
[22] Ottaviani C, Vitali D, Artoni M, Cataliotti F and Tombesi P 2003 Phys. Rev. Lett. 90 197902
[23] Kou J, Wan R G, Kang Z H, Wang H H, Jiang L, Zhang X J, Jiang Y and Gao J Y 2010 J. Opt. Soc. Am. B 27 2035
[24] Petrosyan D and Malakyan Y P 2004 Phys. Rev. A 70 023822
[25] Li S, Yang X, Cao X, Zhang C, Xie C and Wang H 2008 Phys. Rev. Lett. 101 073602
[26] Wang Z B, Marzlin K P and Sanders B C 2006 Phys. Rev. Lett. 97 063901
[27] Doai L V, An N L T, Khoa D X, Sau V N and Bang N H 2019 J. Opt. Soc. Am. B 36 2856
[28] Doai L V 2019 J. Phys. B:At. Mol. Opt. Phys. 52 225501
[29] Dey T N and Agarwal G S 2007 Phys. Rev. A 76 015802
[30] Doai L V 2020 Phys. Scr. 95 035104
[31] Yadav K and Wasan A 2017 Phys. Lett. A 381 3246
[32] Jiao Y F, Lu T X and Jing H 2018 Phys. Rev. A 97 013843
[33] Steck D A, Rb87 D Line Data:http://steck.us/alkalidata
[1] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[2] Nonreciprocal negative refraction in a dense hot atomic medium
Hai Yi(易海), Hongjun Zhang(张红军), and Hui Sun(孙辉). Chin. Phys. B, 2023, 32(4): 044202.
[3] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[4] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[5] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[6] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[7] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[8] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[9] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[10] In situ measurement on nonuniform velocity distributionin external detonation exhaust flow by analysis ofspectrum features using TDLAS
Xiao-Long Huang(黄孝龙), Ning Li(李宁), Chun-Sheng Weng(翁春生), and Yang Kang(康杨). Chin. Phys. B, 2022, 31(1): 014703.
[11] High-resolution three-dimensional atomic microscopy via double electromagnetically induced transparency
Abdul Wahab. Chin. Phys. B, 2021, 30(9): 094202.
[12] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[13] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
[14] Electromagnetically induced transparency and electromagnetically induced absorption in Y-type system
Kalan Mal, Khairul Islam, Suman Mondal, Dipankar Bhattacharyya, Amitava Bandyopadhyay. Chin. Phys. B, 2020, 29(5): 054211.
[15] Precise measurement of a weak radio frequency electric field using a resonant atomic probe
Liping Hao(郝丽萍), Yongmei Xue(薛咏梅), Jiabei Fan(樊佳蓓), Jingxu Bai(白景旭), Yuechun Jiao(焦月春), Jianming Zhao(赵建明). Chin. Phys. B, 2020, 29(3): 033201.
No Suggested Reading articles found!