Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 094206    DOI: 10.1088/1674-1056/24/9/094206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Determination of the atomic density of rubidium-87

Zhao Meng (赵盟), Zhang Kai (张凯), Chen Li-Qing (陈丽清)
State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062, China
Abstract  Atomic density is a basic and important parameter in quantum optics, nonlinear optics, and precision measurement. In the past few decades, several methods have been used to measure atomic density, such as thermionic effect, optical absorption, and resonance fluorescence. The main error of these experiments stemmed from depopulation of the energy level, self-absorption, and the broad bandwidth of the laser. Here we demonstrate the atomic density of 87Rb vapor in paraffin coated cell between 297 K and 334 K mainly using fluorescence measurement. Optical pumping, anti-relaxation coating, and absorption compensation approaches are used to decrease measurement error. These measurement methods are suitable for vapor temperature at dozens of degrees. The fitting function for the experimental data of 87Rb atomic density is given.
Keywords:  atomic density      87Rb vapor      fluorescence      absorption compensation  
Received:  12 February 2015      Revised:  15 April 2015      Accepted manuscript online: 
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.30.Kq (Fourier optics)  
Fund: Project supported by the Natural Science Foundation of China (Grant Nos. 11274118 and 11474095), the Innovation Program of Shanghai Municipal Education Commission of China (Grant No. 13ZZ036), and the Fundamental Research Funds for the Central Universities of China.
Corresponding Authors:  Chen Li-Qing     E-mail:  lqchen@phy.ecnu.edu.cn

Cite this article: 

Zhao Meng (赵盟), Zhang Kai (张凯), Chen Li-Qing (陈丽清) Determination of the atomic density of rubidium-87 2015 Chin. Phys. B 24 094206

[1] Marte A, Volz T, Schuster J, Dürr S, Rempe G, van Kempen E G M and Verhaar B J 2002 Phys. Rev. Lett. 89 283202
[2] Zhou Z C, Wei R, Shi C Y, Li T and Wang Y Z 2011 Chin. Phys. B 20 034206
[3] Qu S P, Zhang Y and Gu S H 2013 Chin. Phys. B 22 099501
[4] Hosseini M, Sparkes B M, Campbell G, Lam P K and Buchler B C 2011 Nat. Commun. 2 174
[5] Vudyasetu P K, Starling D J and Howell J C 2009 Phys. Rev. Lett. 102 123602
[6] Su J, Deng K, Guo D Z, Wang Z, Chen J, Zhang G M and Chen X Z 2010 Chin. Phys. B 19 110701
[7] Zhou H T, Wang D, Guo M J, Gao J R and Zhang J X 2014 Chin. Phys. B 23 093204
[8] Yoshikawa Y, Torii Y and Kuga T 2005 Phys. Rev. Lett. 94 083602
[9] Sheng D, Li S, Dural N and Romalis M V 2013 Phys. Rev. Lett. 110 160802
[10] Liu G B, Sun X P, Gu S H, Feng J W and Zhou X 2012 Physics 41 803
[11] Vanier J 2005 Appl. Phys. B 81 421
[12] Li S L, Xu J, Zhang Z Q, Zhao L B, Long L and Wu Y M 2014 Chin. Phys. B 23 074302
[13] Chen S, Chen Y A, Strassel T, Yuan Z S, Zhao B, Schmiedmayer J and Pan J W 2006 Phys. Rev. Lett. 97 173004
[14] Killian T J 1926 Phys. Rev. 27 578
[15] Gallagher A and Lewist E L 1973 J. Opt. Soc. Am. 63 864
[16] Fairbank W M, Jr Hänsch T W and Schawlow A L 1975 J. Opt. Soc. Am. 65 199
[17] van der Spek A M, Mulders J J L and Steenhuysen L W G 1988 J. Opt. Soc. Am. B 5 1478
[18] Tehranchi M M, Hamidi S M and Abaie B 2013 Journal of the Korean Physical Society 62 731
[19] Olson A J and Mayer S K 2009 Am. J. Phys. 77 116
[20] Seltzer S J 2008 Developments in Alkali-Metal Atomic Magnetometry pp. 32-37 (America: Princeton University)
[21] Steck D A Rubidium 87 D Line Data (Los Alamos National Laboratory)
[22] A Product Of Teachspin 2002 Optical Pumping of Rubidium (New York)
[1] Investigation of spatial structure and sympathetic cooling in the 9Be+40Ca+ bi-component Coulomb crystals
Min Li(李敏), Yong Zhang(张勇), Qian-Yu Zhang(张乾煜), Wen-Li Bai(白文丽), Sheng-Guo He(何胜国), Wen-Cui Peng(彭文翠), and Xin Tong(童昕). Chin. Phys. B, 2023, 32(3): 036402.
[2] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[3] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[4] Surface-enhanced fluorescence and application study based on Ag-wheat leaves
Hongwen Cao(曹红文), Liting Guo(郭立婷), Zhen Sun(孙祯), Tifeng Jiao(焦体峰), and Mingli Wang(王明利). Chin. Phys. B, 2022, 31(3): 037803.
[5] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[6] A novel natural surface-enhanced fluorescence system based on reed leaf as substrate for crystal violet trace detection
Hui-Ju Cao(曹会菊), Hong-Wen Cao(曹红文), Yue Li(李月), Zhen Sun(孙祯), Yun-Fan Yang(杨云帆), Ti-Feng Jiao(焦体峰), and Ming-Li Wang(王明利). Chin. Phys. B, 2022, 31(10): 107801.
[7] Synthesis of SiC/graphene nanosheet composites by helicon wave plasma
Jia-Li Chen(陈佳丽), Pei-Yu Ji(季佩宇), Cheng-Gang Jin(金成刚), Lan-Jian Zhuge(诸葛兰剑), and Xue-Mei Wu(吴雪梅). Chin. Phys. B, 2021, 30(7): 075201.
[8] Degenerate cascade fluorescence: Optical spectral-line narrowing via a single microwave cavity
Liang Hu(胡亮), Xiang-Ming Hu(胡响明), and Qing-Ping Hu(胡庆平). Chin. Phys. B, 2021, 30(6): 064211.
[9] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
[10] Theoretical verification of intermolecular hydrogen bond induced thermally activated delayed fluorescence in SOBF-Ome
Mu-Zhen Li(李慕臻), Fei-Yan Li(李飞雁), Qun Zhang(张群), Kai Zhang(张凯), Yu-Zhi Song(宋玉志), Jian-Zhong Fan(范建忠), Chuan-Kui Wang(王传奎), and Li-Li Lin(蔺丽丽). Chin. Phys. B, 2021, 30(12): 123302.
[11] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[12] Perspective for aggregation-induced delayed fluorescence mechanism: A QM/MM study
Jie Liu(刘杰), Jianzhong Fan(范建忠), Kai Zhang(张凯), Yuchen Zhang(张雨辰), Chuan-Kui Wang(王传奎), Lili Lin(蔺丽丽). Chin. Phys. B, 2020, 29(8): 088504.
[13] Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center
Ruimin Wang(王瑞敏), Irfan Ahmed, Faizan Raza, Changbiao Li(李昌彪), Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2020, 29(5): 054204.
[14] A method for calibrating the confocal volume of a confocal three-dimensional micro-x-ray fluorescence setup
Peng Zhou(周鹏), Xin-Ran Ma(马欣然), Shuang Zhang(张爽), Tian-Xi Sun(孙天希), Zhi-Guo Liu(刘志国). Chin. Phys. B, 2020, 29(2): 020702.
[15] Absorption, quenching, and enhancement by tracer in acetone/toluene laser-induced fluorescence
Guang Chang(常光), Xin Yu(于欣), Jiangbo Peng(彭江波), Yang Yu(于杨), Zhen Cao(曹振), Long Gao(高龙), Minghong Han(韩明宏), and Guohua Wu(武国华). Chin. Phys. B, 2020, 29(12): 124212.
No Suggested Reading articles found!