Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 090703    DOI: 10.1088/1674-1056/ac6dbb
GENERAL Prev   Next  

An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer

Xiu-Bin Liu(刘修彬)1, Feng-Dong Jia(贾凤东)1, Huai-Yu Zhang(张怀宇)1,2, Jiong Mei(梅炅)1,2, Wei-Chen Liang(梁玮宸)1, Fei Zhou(周飞)1, Yong-Hong Yu(俞永宏)1,2, Ya Liu(刘娅)3, Jian Zhang(张剑)4, Feng Xie(谢锋)4,†, and Zhi-Ping Zhong(钟志萍)1,5,‡
1 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
2 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 National Time Service Centre, Chinese Academy of Sciences, Xi'an 710600, China, University of Chinese Academy of Sciences, Beijing 100049, China;
4 Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084, China;
5 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  Recently, a Rydberg atom-based mixer was developed to measure the phase of a radio frequency (RF) field. The phase of the signal RF (SIG RF) field is down-converted directly to the phase of a beat signal created by the presence of a local RF (LO RF) field. In this study, we propose that the Rydberg atom-based mixer can be converted to an all-optical phase detector by amplitude modulation (AM) of the LO RF field; that is, the phase of the SIG RF field is related to both the amplitude and phase of the beat signal. When the AM frequency of the LO RF field is the same as the frequency of the beat signal, the beat signal will further interfere with the AM of the LO RF field inside the atom, and then the amplitude of the beat signal is related to the phase of the SIG RF field. The amplitude of the beat signal and the phase of the SIG RF field show a linear relationship within the range of 0 to π/2 when the phase of the AM is set with a difference π/4 from the phase of the LO RF field. The minimum phase resolution can be as small as 0.6° by optimizing the experimental conditions according to a simple theoretical model. This study will expand and contribute to the development of RF measurement devices based on Rydberg atoms.
Keywords:  quantum sensor      phase detector      Rydberg atoms      micorwave      electromagnetically induced transparency      amplitude modulation  
Received:  24 February 2022      Revised:  23 April 2022      Accepted manuscript online:  07 May 2022
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  84.40.-x (Radiowave and microwave (including millimeter wave) technology)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0304900 and 2017YFA0402300), the Beijing Natural Science Foundation (Grant No. 1212014), the National Natural Science Foundation of China (Grant Nos. 11604334, 11604177, and U2031125), the Key Research Program of the Chinese Academy of Sciences (Grant No. XDPB08-3), the Open Research Fund Program of the State Key Laboratory of LowDimensional Quantum Physics (Grant No. KF201807), the Fundamental Research Funds for the Central Universities, and Youth Innovation Promotion Association CAS.
Corresponding Authors:  Feng Xie, Zhi-Ping Zhong     E-mail:  fxie@tsinghua.edu.cn;zpzhong@ucas.ac.cn

Cite this article: 

Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍) An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer 2022 Chin. Phys. B 31 090703

[1] Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T and Shaffer J P 2012 Nat. Phys. 8 819
[2] Fancher C T, Scherer D R, John M C S and Marlow B L S 2021 IEEE Trans. Quantum Eng. 2 3501313
[3] Fan H Q, Kumar S, Sedlacek J A, Kübler H, Karimkashi S and Shaffer J P 2015 J. Phys. B:At. Mol. Opt. Phys. 48 202001
[4] Holloway C L, Gordon J A, Simons M T, Fan H Q, Kumar S, Shaffer J P, Anderson D A, Schwarzkopf A, Miller S A and Thaicharoen N 2015 IEEE International Symposium on Electromagnetic Compatibility (EMC), August 16-22, 2015, Germany, pp. 467-472
[5] Anderson D A, Sapiro R E and Raithel G 2021 IEEE Trans. Antennas Propag. 69 2455
[6] Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N and Raithel G 2014 IEEE Trans. Antennas Propag. 62 6169
[7] Simons M T, Gordon J A, Holloway C L, Anderson D A, Miller S A and Raithel G 2016 Appl. Phys. Lett. 108 174101
[8] Zhang L J, Jia Y, Jing M Y, Guo L P, Zhang H, Xiao L T and Jia S T 2019 Laser Phys. 29 035701
[9] Fan H Q, Kumar S, Kübler H and Shaffer J P 2016 J. Phys. B:At. Mol. Opt. Phys. 49 104004
[10] Kumar S, Fan H Q, Kübler H, Jahangiri A J and Shaffer J P 2017 Opt. Express 25 8625
[11] Kumar S, Fan H Q, Kübler H, Sheng J T and Shaffer J P 2017 Sci. Rep. 7 1
[12] Liao K Y, Tu H T, Yang S Z, Chen C J, Liu X H, Liang J, Zhang X D, Yan H and Zhu S L 2020 Phys. Rev. A 101 053432
[13] Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T and Jia S T 2020 Nat. Phys. 16 911
[14] Jia F D, Liu X B, Mei J, Yu Y H, Zhang H Y, Lin Z Q, Dong H Y, Zhang J, Xie F and Zhong Z P 2021 Phys. Rev. A 103 063113
[15] Liu X B, Jia F D, Zhang H Y, Mei J, Yu Y H, Liang W C, Zhang J, Xie F and Zhong Z P 2021 AIP Adv. 11 085127
[16] Meyer D H, Cox K C, Fatemi F K and Kunz P D 2018 Appl. Phys. Lett. 112 211108
[17] Deb A and Kjaergaard N 2018 Appl. Phys. Lett. 112 211106
[18] Holloway C L, Simons M T, Gordon J A and Novotny D 2019 IEEE Antennas Wirel. Propag. Lett. 18 1853
[19] Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J and Qu J F 2019 Opt. Express 27 8848
[20] Simons M T, Haddab A H, Gordon J A and Holloway C L 2019 Appl. Phys. Lett. 114 114101
[21] Gordon J A, Simons M T, Haddab A H and Holloway C L 2019 AIP Adv. 9 045030
[22] Robinson A K, Prajapati N, Senic D, Simons M T and Holloway C L 2021 Appl. Phys. Lett. 118 114001
[23] Jia F D, Zhang H Y, Liu X B, Mei J, Yu Y H, Lin Z Q, Dong H Y, Liu Y, Zhang J, Xie F and Zhong Z P, et al. 2021 J. Phys. B:At. Mol. Opt. Phys. 54 165501
[24] Weis A and Derler S 1988 Appl. Opt. 27 2662
[25] Jia F D, Zhang J, Zhang L, Wang F, Mei J, Yu Y H, Xie F and Zhong Z P 2020 Appl. Opt. 59 2108
[26] Jia F D, Yu Y H, Liu X B, Zhang X, Zhang L, Wang F, Mei J, Zhang J, Xie F and Zhong Z P 2020 Appl. Opt. 59 8253
[27] Chen H and Chan E H W 2021 IEEE Photon. J. 13 7900709
[1] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[2] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[3] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[4] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[5] An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening
Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. Chin. Phys. B, 2022, 31(2): 024201.
[6] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[7] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[8] Amplitude modulation excitation for cancellous bone evaluation using a portable ultrasonic backscatter instrumentation
Boyi Li(李博艺), Chengcheng Liu(刘成成), Xin Liu(刘欣), Tho N. H. T. Tran, Ying Li(李颖), Dan Li(李旦), Dongsheng Bi(毕东生), Duwei Liu(刘度为), and Dean Ta(他得安). Chin. Phys. B, 2022, 31(11): 114303.
[9] High-resolution three-dimensional atomic microscopy via double electromagnetically induced transparency
Abdul Wahab. Chin. Phys. B, 2021, 30(9): 094202.
[10] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[11] A 532 nm molecular iodine optical frequency standard based on modulation transfer spectroscopy
Feihu Cheng(程飞虎), Ning Jin(金宁), Fenglei Zhang(张风雷), Hui Li(李慧), Yuanbo Du(杜远博), Jie Zhang(张洁), Ke Deng(邓科), and Zehuang Lu(陆泽晃). Chin. Phys. B, 2021, 30(5): 050603.
[12] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
[13] Hyperbolic metamaterials for high-efficiency generation of circularly polarized Airy beams
Lin Chen(陈林), Huihui Li(李会会), Weiming Hao(郝玮鸣), Xiang Yin(殷祥), Jian Wang(王健). Chin. Phys. B, 2020, 29(8): 084210.
[14] M2-factor of high-power laser beams through a multi-apertured ABCD optical system
Xiangmei Zeng(曾祥梅), Meizhi Zhang(张美志), Dongmei Cao(曹冬梅), Dingyu Sun(孙鼎宇), Hua Zhou(周花). Chin. Phys. B, 2020, 29(6): 064206.
[15] Electromagnetically induced transparency and electromagnetically induced absorption in Y-type system
Kalan Mal, Khairul Islam, Suman Mondal, Dipankar Bhattacharyya, Amitava Bandyopadhyay. Chin. Phys. B, 2020, 29(5): 054211.
No Suggested Reading articles found!