Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 073201    DOI: 10.1088/1674-1056/ac4748
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas

Zi-Shan Xu(徐子珊)1,2, Han-Mu Wang(王汉睦)1,2, Zeng-Li Ba(巴曾立)3, and Hong-Ping Liu(刘红平)1,2,†
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 School of Physical Science, University of Science and Technology of China, Hefei 230026, China
Abstract  We study the transient response dynamics of 87Rb atomic vapor buffered in 8 torr Ne gas through an electromagnetically induced transparency configured in $\varLambda$-scheme. Experimentally, the temporal transmission spectra versus probe detuning by switching on and off the coupling one show complex structures. The transmitted probe light intensity drops to a minimum value when the coupling light turns off, showing a strong absorption. Even at the moment of turning on the coupling light at a subsequent delayed time, the atomic medium shows a fast transient response. To account for the transient switching feature, in the time-dependent optical Bloch equation, we must take the transverse relaxation dephasing process of atomic vapor into account, as well as the fluorescence relaxation along with the optical absorption. This work supplies a technique to quantify the transverse relaxation time scale and to sensitively monitor its variation along the environment by observing the transient dynamics of coherent medium, which is helpful in characterizing the coherent feature of the atomic medium.
Keywords:  electromagnetically induced transparency      rubidium atom      transverse relaxation rate  
Received:  16 October 2021      Revised:  24 December 2021      Accepted manuscript online:  31 December 2021
PACS:  32.70.Cs (Oscillator strengths, lifetimes, transition moments)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
  32.10.Fn (Fine and hyperfine structure)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074388 and 12004393).
Corresponding Authors:  Hong-Ping Liu     E-mail:  liuhongping@wipm.ac.cn

Cite this article: 

Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平) Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas 2022 Chin. Phys. B 31 073201

[1] Seltzer S J, Rampulla D M, Rivillon-Amy S, Chabal Y J, Bernasek S L and Romalis M V 2008 J. Appl. Phys. 104 103116
[2] Julsgaard B, Sherson J, Cirac J I, Fiurasek J and Polzik E S 2004 Nature 432 482
[3] Kuzmich A, Mandel L and Bigelow N P 2000 Phys. Rev. Lett. 85 1594
[4] Zhao S C, Wu Q X and Ma K 2016 Chin. J. Phys. 54 756
[5] Zhang H, Zou S, Chen X Y and Li Y 2015 J. Korean Phys. Soc. 66 1212
[6] Budker D and Romalis M 2007 Nat. Phys. 3 227
[7] Seltzer S J and Romalis M V 2009 J. Appl. Phys. 106 114905
[8] Brandt S, Nagel A, Wynands R and Meschede D 1997 Phys. Rev. A 56 R1063
[9] Katsoprinakis G E, Dellis A T and Kominis I K 2007 Phys. Rev. A 75 042502
[10] Dreiling J M, Norrgard E B, Tupa D and Gay T J 2012 Phys. Rev. A 86 053416
[11] Liu X H, Luo H, Qu T L, Yang K Y and Ding Z C 2015 AIP Adv. 5 107119
[12] Khalkhali S M H, Ranjbaran M, Mofidi D, Hamidi S M and Tehranchi M M 2017 Chin. J. Phys. 55 301
[13] Horsley A, Du G X, Pellaton M, Affolderbach C, Mileti G and Treutlein P 2013 Phys. Rev. A 88 063407
[14] Jeong H and Du S W 2009 Phys. Rev. A 79 011802
[15] Jeong H and Du S 2010 Opt. Lett. 35 124
[16] Wei D, Chen J F, Loy M M T, Wong G K L and Du S 2009 Phys. Rev. Lett. 103 093602
[17] Jeong H and Du S 2010 Opt. Lett. 35 124
[18] Meinert F, Basler C, Lambrecht A, Welte S and Helm H 2012 Phys. Rev. A 85 013820
[19] Shwa D and Katz N 2014 Phys. Rev. A 90 023858
[20] Meinert F, Basler C, Lambrecht A, Welte S and Helm H 2012 Phys. Rev. A 85 013820
[21] Valente P, Failache H and Lezama A 2003 Phys. Rev. A 67 013806
[22] Li Y Q and Xiao M 1995 Opt. Lett. 20 1489
[23] Shuker M, Firstenberg O, Sagi Y, Ben-kish A, Davidson N and Ron A 2008 Phys. Rev. A 78 063818
[24] Corsini E P, Karaulanov T, Balabas M and Budker D 2013 Phys. Rev. A 87 022901
[25] Chen H X, Durrant A V, Marangos J P and Vaccaro J A 1998 Phys. Rev. A 58 1545
[26] Greentree A D, Smith T B, de Echaniz S R, Durrant A V, Marangos J P, Segal D M and Vaccaro J A 2002 Phys. Rev. A 65 053802
[27] Tan W H and Zhang W P 1985 Chin. Phys. Lett. 2 309
[28] Ke H L, Miao P X, Yang S Y, Tu J H, Hao J, Zhu L L, Yang B, Wang J, Yang W, Cui J Z and Sun R T 2019 Optik 180 517
[29] Minemoto T and Kanda T 1971 J. Phys. Soc. Jpn. 31 1174
[30] Jacobson E 1977 J. Phys. B 10 3409
[31] Fu Y Y and Yuan J 2019 Chin. Phys. B 28 098504
[32] Liu X J, Ding M, Li Y, Hu Y H, Jin W and Fang J C 2018 Chin. Phys. B 27 073201
[33] Luo J, Wu Z H, Zhao M X, Chen A Q and Zeng X Z 1996 J. Phys. B 29 3319
[34] Ding Z, Yuan J, Li Y, Feng W and Wang Z 2015 Acta Opt. Sin. 35 0602002 (in Chinese)
[35] Sarkisyan D G, Papoyan A V, Varzhapetyan T S, Blush K and Auzinsh M 2014 Opt. Spectrosc. 96 328
[36] Horsley A, Du G X, Pellaton M, Affolderbach C, Mileti G and Treutlein P 2013 Phys. Rev. A 88 063407
[37] Li Q, Zeng X, Zhang J et al. 2011 Academic International Symposium on Optoelectronics and Microelectronics Technology, October 12-16, 2011, Harbin, China, pp. 27-30
[1] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[2] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[3] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[4] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[5] An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening
Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. Chin. Phys. B, 2022, 31(2): 024201.
[6] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[7] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[8] High-resolution three-dimensional atomic microscopy via double electromagnetically induced transparency
Abdul Wahab. Chin. Phys. B, 2021, 30(9): 094202.
[9] Spectral filtering of dual lasers with a high-finesse length-tunable cavity for rubidium atom Rydberg excitation
Yang-Yang Liu(刘杨洋), Zhuo Fu(付卓), Peng Xu(许鹏), Xiao-Dong He(何晓东), Jin Wang(王谨), and Ming-Sheng Zhan(詹明生). Chin. Phys. B, 2021, 30(7): 074203.
[10] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[11] A 795 nm gain coupled distributed feedback semiconductor laser based on tilted waveguides
De-Zheng Ma(马德正), Yong-Yi Chen(陈泳屹), Yu-Xin Lei(雷宇鑫), Peng Jia(贾鹏), Feng Gao(高峰), Yu-Gang Zeng(曾玉刚), Lei Liang(梁磊), Yue Song(宋悦), Chun-Kao Ruan(阮春烤), Xia Liu(刘夏), Li Qin(秦莉), Yong-Qiang Ning(宁永强), and Li-Jun Wang(王立军). Chin. Phys. B, 2021, 30(5): 050505.
[12] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
[13] Electromagnetically induced transparency and electromagnetically induced absorption in Y-type system
Kalan Mal, Khairul Islam, Suman Mondal, Dipankar Bhattacharyya, Amitava Bandyopadhyay. Chin. Phys. B, 2020, 29(5): 054211.
[14] Precise measurement of a weak radio frequency electric field using a resonant atomic probe
Liping Hao(郝丽萍), Yongmei Xue(薛咏梅), Jiabei Fan(樊佳蓓), Jingxu Bai(白景旭), Yuechun Jiao(焦月春), Jianming Zhao(赵建明). Chin. Phys. B, 2020, 29(3): 033201.
[15] Dynamic manipulation of probe pulse and coherent generation of beating signals based on tunneling-induced inference in triangular quantum dot molecules
Nuo Ba(巴诺), Jin-You Fei(费金友), Dong-Fei Li(李东飞), Xin Zhong(钟鑫), Dan Wang(王丹), Lei Wang(王磊), Hai-Hua Wang(王海华), Qian-Qian Bao(鲍倩倩). Chin. Phys. B, 2020, 29(3): 034204.
No Suggested Reading articles found!