Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 097104    DOI: 10.1088/1674-1056/24/9/097104
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Coexistence of positive and negative magnetic entropy changes in CeMn2(Si1-xGex)2 compounds

Zuo Wen-Liang (左文亮), Hu Feng-Xia (胡凤霞), Sun Ji-Rong (孙继荣), Shen Bao-Gen (沈保根)
State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  A series of CeMn2(Si1-xGex)2 (x=0.2, 0.4, 0.6, 0.8) compounds are prepared by the arc-melting method. All the samples primarily crystallize in the ThCr2Si2-type structure. The temperature dependences of zero-field-cooled (ZFC) and FC magnetization measurements show a transition from antiferromagnetic (AFM) state to ferromagnetic (FM) state at room temperature with the increase of the Ge concentration. For x=0.4, the sample exhibits two kinds of phase transitions with increasing temperature: from AFM to FM and from FM to paramagnetic (PM) at around TN ~ 197 K and TC ~ 300 K, respectively. The corresponding Arrott curves indicate that the AFM-FM transition is of first-order character and the FM-PM transition is of second-order character. Meanwhile, the coexistence of positive and negative magnetic entropy changes can be observed, which are corresponding to the AFM-FM and FM-PM transitions, respectively.
Keywords:  magnetocaloric effect      CeMn2(Si0.6Ge0.4)2 compound      metamagnetic transition      positive entropy change  
Received:  11 May 2015      Revised:  12 June 2015      Accepted manuscript online: 
PACS:  71.20.Eh (Rare earth metals and alloys)  
  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  75.50.Ee (Antiferromagnetics)  
  75.47.Np (Metals and alloys)  
Fund: Project supported by the Beijing Natural Science Foundation, China (Grant No. 2152034) and the National Natural Science Foundation of China (Grant Nos. 11274357 and 51271196).
Corresponding Authors:  Zuo Wen-Liang, Shen Bao-Gen     E-mail:  wlzuo@iphy.ac.cn;shenbg@aphy.iphy.ac.cn

Cite this article: 

Zuo Wen-Liang (左文亮), Hu Feng-Xia (胡凤霞), Sun Ji-Rong (孙继荣), Shen Bao-Gen (沈保根) Coexistence of positive and negative magnetic entropy changes in CeMn2(Si1-xGex)2 compounds 2015 Chin. Phys. B 24 097104

[1] Gschneidner K A and Pecharsky V K 2000 Annu. Rev. Mater. Sci. 30 387
[2] Gutfleisch O, Willard M A, Bruck E, Chen C H, Sankar S G and Liu J P 2011 Adv. Mater. 23 821
[3] Shen B G, Sun J R, Hu F X, Zhang H W and Cheng Z H 2009 Adv. Mater. 21 4545
[4] Pecharsky V K and Gschneidner K A 1997 Phys. Rev. Lett. 78 4494
[5] Wang J L, Campbell S J, Cadogan J M, Studer A J, Zeng R and Dou S X 2011 Appl. Phys. Lett. 98 232509
[6] Tishin A M and Spichkin A I 2003 The Magnetocalric Effect and its Applications (London: Institute of Physics Publishing)
[7] Gschneidner K A, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
[8] de Oliveira N A and von Ranke P J 2010 Phys. Rep. 489 89
[9] Roy S B 2014 Handbook of Magnetic Materials 2014 (Amsterdam: Elsevier) 22
[10] Fujita A, Fujieda S, Hasegawa Y and Fukamichi K 2003 Phys. Rev. B 67 104416
[11] Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H and Zhang X X 2001 Appl. Phys. Lett. 78 3675
[12] Li L, Hutchison W D, Huo D, Namiki T, Qian Z and Nishimura K 2012 Scr. Mater. 67 237
[13] Kumar P, Singh N K, Suresh K G and Nigam A K 2007 J. Alloys Compd. 427 42
[14] Duman E, Acet M, Elerman Y, Elmali A and Wassermann E F 2002 J. Magn. Magn. Mater. 238 11
[15] Emre B, Dincer I and Elerman Y 2010 Solid State Commun. 150 1279
[16] Wang J L, Campbell S J, Zeng R, Poh C K, Dou S X and Kennedy S J 2009 J. Appl. Phys. 105 07A909
[17] FernandezBaca J A, Hill P, Chakoumakos B C and Ali N 1996 J. Appl. Phys. 79 5398
[18] Lalic M V, Mestnik-Filho J, Carbonari A W and Saxena R N 2004 J. Phys.: Condens. Matter 16 6685
[19] Liang G and Croft M 1989 Phys. Rev. B 40 361
[20] Duman E, Acet M, Dincer I, Elmali A and Elerman Y 2007 J. Magn. Magn. Mater. 309 40
[21] Elmali A, Dincer I, Elerman Y, Ehrenberg H and Fuess H 2003 J. Phys.: Condens. Matter 15 653
[22] Chau N, Cuong D H, Tho N D, Nhat H N, Luong N H and Cong B T 2004 J. Magn. Magn. Mater 272-276 1292
[23] Banerjee B K 1964 Phys. Lett. 12 16
[1] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[2] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[3] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[4] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[5] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[6] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[7] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[8] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[9] Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)
Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰). Chin. Phys. B, 2021, 30(7): 077501.
[10] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[11] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[12] Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction
Pengfei Liu(刘鹏飞), Jie Peng(彭杰), Mianqi Xue(薛面起), Bosen Wang(王铂森). Chin. Phys. B, 2020, 29(4): 047503.
[13] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
[14] Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds
Wen-Hao Jiang(姜文昊), Zhao-Jun Mo(莫兆军), Jia-Wei Luo(罗佳薇), Zhe-Xuan Zheng(郑哲轩), Qiu-Jie Lu(卢秋杰), Guo-Dong Liu(刘国栋), Jun Shen(沈俊), Lan Li(李岚). Chin. Phys. B, 2020, 29(3): 037502.
[15] Improvement of the low-field-induced magnetocaloric effect in EuTiO 3 compounds
Shuang Zeng(曾爽), Wen-Hao Jiang(姜文昊), Hui Yang(杨慧), Zhao-Jun Mo(莫兆军) Jun Shen(沈俊), and Lan Li(李岚) . Chin. Phys. B, 2020, 29(12): 127501.
No Suggested Reading articles found!