Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 097103    DOI: 10.1088/1674-1056/24/9/097103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic structures and elastic properties of monolayer and bilayer transition metal dichalcogenides MX2 (M= Mo, W; X= O, S, Se, Te): A comparative first-principles study

Zeng Fan (曾范)a b c, Zhang Wei-Bing (张卫兵)b, Tang Bi-Yu (唐壁玉)a c
a Department of Physics, Xiangtan University, Xiangtan 411105, China;
b School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410114, China;
c School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
Abstract  First-principle calculations with different exchange-correlation functionals, including LDA, PBE, and vdW-DF functional in the form of optB88-vdW, have been performed to investigate the electronic and elastic properties of two-dimensional transition metal dichalcogenides (TMDCs) with the formula of MX2(M= Mo, W; X = O, S, Se, Te) in both monolayer and bilayer structures. The calculated band structures show a direct band gap for monolayer TMDCs at the K point except for MoO2 and WO2. When the monolayers are stacked into a bilayer, the reduced indirect band gaps are found except for bilayer WTe2, in which the direct gap is still present at the K point. The calculated in-plane Young moduli are comparable to that of graphene, which promises possible application of TMDCs in future flexible and stretchable electronic devices. We also evaluated the performance of different functionals including LDA, PBE, and optB88-vdW in describing elastic moduli of TMDCs and found that LDA seems to be the most qualified method. Moreover, our calculations suggest that the Young moduli for bilayers are insensitive to stacking orders and the mechanical coupling between monolayers seems to be negligible.
Keywords:  transition metal dichalcogenides      bilayer structures      elastic properties      electronic structure  
Received:  25 March 2015      Revised:  24 April 2015      Accepted manuscript online: 
PACS:  71.15.Nc (Total energy and cohesive energy calculations)  
  62.20.de (Elastic moduli)  
  62.20.dj (Poisson's ratio)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
Fund: Project supported by the Construct Program of the Key Discipline in Hunan Province, China and Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, China.
Corresponding Authors:  Zhang Wei-Bing, Tang Bi-Yu     E-mail:  zhangwb@csust.edu.cn;tangbiyu@gxu.edu.cn

Cite this article: 

Zeng Fan (曾范), Zhang Wei-Bing (张卫兵), Tang Bi-Yu (唐壁玉) Electronic structures and elastic properties of monolayer and bilayer transition metal dichalcogenides MX2 (M= Mo, W; X= O, S, Se, Te): A comparative first-principles study 2015 Chin. Phys. B 24 097103

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Chen J H, Jang C, Xiao S, Ishigami M and Fuhrer M S 2008 Nat. Nanotechnol. 3 206
[3] Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385
[4] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y and Galli G and Wang F 2010 Nat. Nanotechnol. 10 1271
[5] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[6] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[7] Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343
[8] Geim A K and Grigorieva I V 2013 Nature 499 419
[9] Bertolazzi S, Brivio J and Kis A 2011 ACS Nano 5 9703
[10] Liu K, Yan Q, Chen M, Fan W, Sun Y, Suh J, Fu D, Lee S, Zhou J, Tongay S, Ji J, Neaton J B and Wu J 2014 Nano Lett. 14 5097
[11] Ataca C, Topsakal M, Akturk E and Ciraci S 2011 J. Phys. Chem. C 115 16354
[12] Cooper R C, Lee C, Marianetti C A, Wei X, Hone J and Kysar J W 2013 Phys. Rev. B 87 035423
[13] Kang J, Tongay S, Zhou J, Li J and Wu J 2013 Appl. Phys. Lett. 102 012111
[14] Čakr D, Peeters F M and Sevik C 2014 Appl. Phys. Lett. 104 203110
[15] Wang Z Y, Zhou Y L, Wang X Q, Wang F, Sun Q, Guo Z X and Jia Y 2015 Chin. Phys. B 24 026501
[16] Molina-Sánchez A, Sangalli D, Hummer K, Marini A and Wirtz L 2013 Phys. Rev. B 88 045412
[17] Yun W S, Han S W, Hong S C, Kim I G and Lee J D 2012 Phys. Rev. B 85 033305
[18] Ramasubramaniam A, Naveh D and Towe E 2011 Phys. Rev. B 84 205325
[19] He J, Hummer K and Franchini C 2014 Phys. Rev. B 89 075409
[20] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[21] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[22] Klimeš J, Bowler D R and Michaelides A 2010 J. Phys.: Condens. Matter 22 022201
[23] Klimeš J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131
[24] Zhang W B, Chen C and Tang P Y 2014 J. Chem. Phys. 141 044708
[25] Cadelano E, Palla P L, Giordano S and Colombo L 2010 Phys. Rev. B 82 235414
[26] Ataca C and Ciraci S 2011 J. Phys. Chem. C 115 13303
[27] Shi H, Pan H, Zhang Y W and Yakobson B I 2013 Phys. Rev. B 87 155304
[28] Castellanos-Gomez A, Poot M, Steele G A, van der Zant H S, Agraït N and Rubio-Bollinger G 2012 Adv. Mater. 24 772
[29] Conley H J, Wang B, Ziegler J I, Haglund Jr R F, Pantelides S T and Bolotin K I 2013 Nano Lett. 13 3626
[30] Ataca C, Sahin H and Ciraci S 2012 J. Phys. Chem. C 116 8983
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[4] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[5] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[6] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[7] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[8] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[9] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[10] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[11] Topological superconductivity in Janus monolayer transition metal dichalcogenides
Xian-Dong Li(李现东), Zuo-Dong Yu(余作东), Wei-Peng Chen(陈伟鹏), and Chang-De Gong(龚昌德). Chin. Phys. B, 2022, 31(11): 110304.
[12] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[13] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[14] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[15] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
No Suggested Reading articles found!