Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 064205    DOI: 10.1088/1674-1056/24/6/064205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Multiple frequency conversion via atomic spin coherence of storing a light pulse

Wang Lei (王磊)a, Luo Meng-Xi (罗梦希)a, Sun Jia-Xiang (孙家翔)a, Sun Yuan-Hang (孙远航)a, Chen Yi (陈怡)b, Wei Xiao-Gang (魏小刚)c, Kang Zhi-Hui (康智慧)a, Wang Hai-Hua (王海华)a, Gao Jin-Yue (高锦岳)a
a College of Physics, Jilin University, Changchun 130012, China;
b Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
c Quantum Engineering Center, Beijing Institute of Control Devices, Beijing 100854, China
Abstract  We experimentally demonstrate multiple frequency conversion via atomic spin coherence of storing a light pulse in a doped solid. The essence of this multiple frequency conversion is four-wave mixing based on stored atomic spin coherence. Through electromagnetically induced transparency, an input probe pulse is stored into atomic spin coherence by modulating the intensity of the control field. By using two different control fields to interact with the coherently prepared medium, the stored atomic spin coherence can be transformed into three different information channels. Multiple frequency conversion is implemented efficiently by manipulating the spectra of the control fields to scatter atomic spin coherence. This multiple frequency conversion is expected to have potential applications in information processing and communication network.
Keywords:  frequency conversion      atomic spin coherence      light storage      electromagnetically induced transparency  
Received:  22 November 2014      Revised:  16 December 2014      Accepted manuscript online: 
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB921603), the National Natural Science Foundation of China (Grant Nos. 11374126, 11347137, 11404336, and 11204103), the China Postdoctoral Science Foundation (Grant No. 2013T60317), and the National Fund for Fostering Talents of Basic Science, China (Grant No. J1103202).
Corresponding Authors:  Wang Hai-Hua     E-mail:  haihua@jlu.edu.cn
About author:  42.50.Gy; 42.50.Hz

Cite this article: 

Wang Lei (王磊), Luo Meng-Xi (罗梦希), Sun Jia-Xiang (孙家翔), Sun Yuan-Hang (孙远航), Chen Yi (陈怡), Wei Xiao-Gang (魏小刚), Kang Zhi-Hui (康智慧), Wang Hai-Hua (王海华), Gao Jin-Yue (高锦岳) Multiple frequency conversion via atomic spin coherence of storing a light pulse 2015 Chin. Phys. B 24 064205

[1] Fleischhauer M and Imamoglu A 2005 Rev. Mod. Phys. 77 633
[2] Fleischhauer M and Lukin M D 2000 Phys. Rev. Lett. 84 5094
[3] Liu C, Dutton Z, Behroozi C H and Hau L V 2001 Nature 409 490
[4] Phillips D F, Fleischhauer A, Mair A, Walsworth R L and Lukin M D 2001 Phys. Rev. Lett. 86 783
[5] Choi K S, Deng H, Laurat J and Kimble H J 2008 Nature 452 67
[6] Appel J, Figueroa E, Korystov D, Lobino M and Lvovsky A I 2008 Phys. Rev. Lett. 100 093602
[7] Chen Y F, Wang C Y, Wang S H and Yu I A 2006 Phys. Rev. Lett. 96 043603.
[8] VanderWal C H, Eisaman M D, Andre A, Walsworth R L, Phillips D F, Zibrov A S, and Lukin M D 2003 Science 301 196
[9] Zibrov A S, Matsko A B, Kocharovskaya O, Rostovtsev Y V, Welch G R and Scully M O 2002 Phys. Rev. Lett. 88 103601
[10] Chen Y F, Kuan P C, Wang S H, Wang C Y and Yu I A 2006 Opt. Lett. 31 3511
[11] Wang H H, Li A J, Du D M, Fan Y F, Wang L, Kang Z H, Jiang Y, Wu J H and Gao J Y 2008 Appl. Phys. Lett. 93 221112
[12] Vewinger F, Appel J, Figueroa E and Lvovsky A I 2007 Opt. Lett. 32 2771
[13] Camacho R M, Vudyasetu R K and Howell J C 2009 Nat. Photon. 3 103
[14] Wu J H, Liu Y, Ding D S, Zhou Z Y, Shi B S and Guo G C 2013 Phys. Rev. A 87 013845
[15] Nilsson M, Rippe L and Kroll S 2004 Phys. Rev. B 70 214116
[16] Ham B S, Hemmer P R and Shahriar M S 1997 Opt. Commun. 144 227
[17] Ham B S, Shahriar M S and Hemmer P R 1997 Opt. Lett. 22 1138
[18] Turukhin A V, Sudarshanam V S, Shahriar M S, Musser J A, Ham B S and Hemmer P R 2002 Phys. Rev. Lett. 88 023602
[19] Longdell J J, Fraval E, Sellars M J and Manson N B 2005 Phys. Rev. Lett. 95 063601
[20] Afzelius M, Usmani I, Amari A, Lauritzen B, Walther A, Simon C, Sangouard N, Minar J, DeRiedmatten H, Gisin N and Kroll S 2010 Phys. Rev. Lett. 104 040503
[21] Wang L, Yang Q Y, Wang X X, Luo M X, Fan Y F, Kang Z H, Dai T Y, Bi S, Wang H H, Wu, J H and Gao J Y 2014 Chin. Phys. B 23 014205
[22] Fan Y F, Wang H H, Wang R, Zhang X J, Kang Z H, Wu J H, Zhang H Z and Gao J Y 2012 Chin. Phys. B 21 024205
[23] Chen L Q, Zhang G W, Yuan C H, Jing J, Ou Z Y and Zhang W P 2009 Appl. Phys. Lett. 95 041115
[1] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[2] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[3] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[4] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[5] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[6] An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening
Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. Chin. Phys. B, 2022, 31(2): 024201.
[7] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[8] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[9] Enhancement of the second harmonic generation from monolayer WS2 coupled with a silica microsphere
Xiao-Zhuo Qi(祁晓卓), and Xi-Feng Ren(任希锋). Chin. Phys. B, 2022, 31(10): 104203.
[10] High-energy picosecond single-pass multi-stage optical parametric generator and amplifier
Yang Yu(余洋), Zhao Liu(刘钊), Ke Liu(刘可), Chao Ma(马超), Hong-Wei Gao(高宏伟), Xiao-Jun Wang(王小军), Yong Bo(薄勇), Da-Fu Cui(崔大复), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(1): 014204.
[11] A 515-nm laser-pumped idler-resonant femtosecond BiB3O6 optical parametric oscillator
Jinfang Yang(杨金芳), Zhaohua Wang(王兆华), Jiajun Song(宋贾俊), Renchong Lv(吕仁冲), Xianzhi Wang(王羡之), Jiangfeng Zhu(朱江峰), and Zhiyi Wei(魏志义). Chin. Phys. B, 2022, 31(1): 014213.
[12] High-resolution three-dimensional atomic microscopy via double electromagnetically induced transparency
Abdul Wahab. Chin. Phys. B, 2021, 30(9): 094202.
[13] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[14] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
[15] Electromagnetically induced transparency and electromagnetically induced absorption in Y-type system
Kalan Mal, Khairul Islam, Suman Mondal, Dipankar Bhattacharyya, Amitava Bandyopadhyay. Chin. Phys. B, 2020, 29(5): 054211.
No Suggested Reading articles found!