ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Multiple frequency conversion via atomic spin coherence of storing a light pulse |
Wang Lei (王磊)a, Luo Meng-Xi (罗梦希)a, Sun Jia-Xiang (孙家翔)a, Sun Yuan-Hang (孙远航)a, Chen Yi (陈怡)b, Wei Xiao-Gang (魏小刚)c, Kang Zhi-Hui (康智慧)a, Wang Hai-Hua (王海华)a, Gao Jin-Yue (高锦岳)a |
a College of Physics, Jilin University, Changchun 130012, China; b Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China; c Quantum Engineering Center, Beijing Institute of Control Devices, Beijing 100854, China |
|
|
Abstract We experimentally demonstrate multiple frequency conversion via atomic spin coherence of storing a light pulse in a doped solid. The essence of this multiple frequency conversion is four-wave mixing based on stored atomic spin coherence. Through electromagnetically induced transparency, an input probe pulse is stored into atomic spin coherence by modulating the intensity of the control field. By using two different control fields to interact with the coherently prepared medium, the stored atomic spin coherence can be transformed into three different information channels. Multiple frequency conversion is implemented efficiently by manipulating the spectra of the control fields to scatter atomic spin coherence. This multiple frequency conversion is expected to have potential applications in information processing and communication network.
|
Received: 22 November 2014
Revised: 16 December 2014
Accepted manuscript online:
|
PACS:
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB921603), the National Natural Science Foundation of China (Grant Nos. 11374126, 11347137, 11404336, and 11204103), the China Postdoctoral Science Foundation (Grant No. 2013T60317), and the National Fund for Fostering Talents of Basic Science, China (Grant No. J1103202). |
Corresponding Authors:
Wang Hai-Hua
E-mail: haihua@jlu.edu.cn
|
About author: 42.50.Gy; 42.50.Hz |
Cite this article:
Wang Lei (王磊), Luo Meng-Xi (罗梦希), Sun Jia-Xiang (孙家翔), Sun Yuan-Hang (孙远航), Chen Yi (陈怡), Wei Xiao-Gang (魏小刚), Kang Zhi-Hui (康智慧), Wang Hai-Hua (王海华), Gao Jin-Yue (高锦岳) Multiple frequency conversion via atomic spin coherence of storing a light pulse 2015 Chin. Phys. B 24 064205
|
[1] |
Fleischhauer M and Imamoglu A 2005 Rev. Mod. Phys. 77 633
|
[2] |
Fleischhauer M and Lukin M D 2000 Phys. Rev. Lett. 84 5094
|
[3] |
Liu C, Dutton Z, Behroozi C H and Hau L V 2001 Nature 409 490
|
[4] |
Phillips D F, Fleischhauer A, Mair A, Walsworth R L and Lukin M D 2001 Phys. Rev. Lett. 86 783
|
[5] |
Choi K S, Deng H, Laurat J and Kimble H J 2008 Nature 452 67
|
[6] |
Appel J, Figueroa E, Korystov D, Lobino M and Lvovsky A I 2008 Phys. Rev. Lett. 100 093602
|
[7] |
Chen Y F, Wang C Y, Wang S H and Yu I A 2006 Phys. Rev. Lett. 96 043603.
|
[8] |
VanderWal C H, Eisaman M D, Andre A, Walsworth R L, Phillips D F, Zibrov A S, and Lukin M D 2003 Science 301 196
|
[9] |
Zibrov A S, Matsko A B, Kocharovskaya O, Rostovtsev Y V, Welch G R and Scully M O 2002 Phys. Rev. Lett. 88 103601
|
[10] |
Chen Y F, Kuan P C, Wang S H, Wang C Y and Yu I A 2006 Opt. Lett. 31 3511
|
[11] |
Wang H H, Li A J, Du D M, Fan Y F, Wang L, Kang Z H, Jiang Y, Wu J H and Gao J Y 2008 Appl. Phys. Lett. 93 221112
|
[12] |
Vewinger F, Appel J, Figueroa E and Lvovsky A I 2007 Opt. Lett. 32 2771
|
[13] |
Camacho R M, Vudyasetu R K and Howell J C 2009 Nat. Photon. 3 103
|
[14] |
Wu J H, Liu Y, Ding D S, Zhou Z Y, Shi B S and Guo G C 2013 Phys. Rev. A 87 013845
|
[15] |
Nilsson M, Rippe L and Kroll S 2004 Phys. Rev. B 70 214116
|
[16] |
Ham B S, Hemmer P R and Shahriar M S 1997 Opt. Commun. 144 227
|
[17] |
Ham B S, Shahriar M S and Hemmer P R 1997 Opt. Lett. 22 1138
|
[18] |
Turukhin A V, Sudarshanam V S, Shahriar M S, Musser J A, Ham B S and Hemmer P R 2002 Phys. Rev. Lett. 88 023602
|
[19] |
Longdell J J, Fraval E, Sellars M J and Manson N B 2005 Phys. Rev. Lett. 95 063601
|
[20] |
Afzelius M, Usmani I, Amari A, Lauritzen B, Walther A, Simon C, Sangouard N, Minar J, DeRiedmatten H, Gisin N and Kroll S 2010 Phys. Rev. Lett. 104 040503
|
[21] |
Wang L, Yang Q Y, Wang X X, Luo M X, Fan Y F, Kang Z H, Dai T Y, Bi S, Wang H H, Wu, J H and Gao J Y 2014 Chin. Phys. B 23 014205
|
[22] |
Fan Y F, Wang H H, Wang R, Zhang X J, Kang Z H, Wu J H, Zhang H Z and Gao J Y 2012 Chin. Phys. B 21 024205
|
[23] |
Chen L Q, Zhang G W, Yuan C H, Jing J, Ou Z Y and Zhang W P 2009 Appl. Phys. Lett. 95 041115
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|