Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 074206    DOI: 10.1088/1674-1056/abd75a
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms

Shang-Yu Zhai(翟尚宇)1,2 and Jin-Hui Wu(吴金辉)1,2,†
1 Center for Quantum Sciences, Northeast Normal University, Changchun 130117, China;
2 School of Physics, Northeast Normal University, Changchun 130024, China
Abstract  We study the steady optical response of a square lattice in which all trapped atoms are driven by a probe and a coupling fields into the ladder configuration of electromagnetically induced transparency (EIT). It turns out to be a many-body problem in the presence of van der Waals (vdW) interaction among atoms in the upmost Rydberg state, so Monte Carlo (MC) calculation based on density matrix equations have been done after introducing a sufficiently large cut-off radius. It is found that the absorption and dispersion of EIT spectra depends critically on a few key parameters like lattice dimension, unitary vdW shift, probe Rabi frequency, and coupling detuning. Through modulating these parameters, it is viable to change symmetries of the absorption and dispersion spectra and control on demand depth and position of the transparency window. Our MC calculation is expected to be instructive in understanding many-body quantum coherence effects and in manipulating non-equilibrium quantum phenomena by utilizing vdW interactions of Rydberg atoms.
Keywords:  electromagnetically induced transparency      Rydberg atomic lattices      Monte Carlo simulations  
Received:  19 October 2020      Revised:  11 December 2020      Accepted manuscript online:  30 December 2020
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  32.80.Ee (Rydberg states)  
  37.10.Gh (Atom traps and guides)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12074061).
Corresponding Authors:  Jin-Hui Wu     E-mail:  jhwu@nenu.edu.cn

Cite this article: 

Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉) Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms 2021 Chin. Phys. B 30 074206

[1] Mohapatra A K, Jackson T R and Adams C S 2007 Phys. Rev. Lett. 98 113003
[2] Mauger S, Millen J and Jones M P A 2007 J. Phys. B: At. Mol. Opt. Phys. 40 F319
[3] Mohapatra A K, Bason M G, Butscher B, Weatherill K J and Adams C S 2008 Nat. Phys. 4 890
[4] Zhang L J, Bao S X, Zhang H and Raithel G 2017 arXiv: 1702.04842 [physics.atom-ph]
[5] Zhao J, Zhu X, Zhang L, Feng Z, Li C and Jia S 2009 Opt. Express 17 15821
[6] Kubler H, Shaffer J P, Baluktsian T, Low R and Pfau T 2010 Nat. Photon. 4 112
[7] Tauschinsky A, Thijssen R M T, Whitlock S, van Linden van den Heuvell H B and Spreeuw R J C 2010 Phys. Rev. A 81 063411
[8] Ates C, Sevincli S and Pohl T 2011 Phys. Rev. A 83 041802
[9] Sedlacek J A, Schwettmann A, Kubler H and Shaffer J P 2013 Phys. Rev. Lett. 111 063001
[10] Brion E, Pedersen L H and Molmer K 2007 J. Phys. B 40 S159
[11] Muller M, Lesanovsky I, Weimer H, Buchler H P and Zoller P 2009 Phys. Rev. Lett. 102 170502
[12] Moller D, Madsen L B and Molmer K 2008 Phys. Rev. Lett. 100 170504
[13] Rao D D B and Molmer K 2013 Phys. Rev. Lett. 111 033606
[14] Wuster S, Mobius S, Genkin M, Eisfeld A and Rost J M 2013 Phys. Rev. A 88 063644
[15] Baur S, Tiarks D, Rempe G and Durr S 2014 Phys. Rev. Lett. 112 073901
[16] Tiarks D, Baur S, Schneider K, Durr S and Rempe G 2014 arXiv: 1404.3061 [quant-ph]
[17] Zhang Q R, Wang B B, Zhang M L and Yan D 2018 Acta Phys. Sin. 67 034202 (in Chinese)
[18] Peyronel T, Firstenberg O, Liang Q Y, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D and Vuletic V 2012 Nature 488 57
[19] Huang J F, Liao J Q and Sun C P 2013 Phys. Rev. A 87 023822
[20] Muller M M, Kolle A, Low R, Pfau T, Calarco T and Montangero S 2013 Phys. Rev. A 87 053412
[21] Tong D, Farooqi S M, Stanojevic J, Krishnan S, Zhang Y P, Cote R, Eyler E E and Gould P L 2004 Phys. Rev. Lett. 93 063001
[22] Harris S E 1997 Phys. Today 50 36
[23] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[24] Weatherill K J, Pritchard J D, Abel R P, Bason M G, Mohapatra A K and Adams C S 2008 J. Phys. B: At. Mol. Opt. Phys. 41 201002
[25] Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Jones M P A and Adams C S 2010 Phys. Rev. Lett. 105 193603
[26] Yang Z W, Jiao Y C, Han X X, Zhao J M and Jia S T 2016 Acta Phys. Sin. 65 103201 (in Chinese)
[27] Yang Z W, Jiao Y C, Han X X, Zhao J M and Jia S T 2017 Acta Phys. Sin. 66 093202 (in Chinese)
[28] Liu C, Dutton Z, Behroozi C H and Hau L 2001 Nature 409 490
[29] Chaneliere T, Matsukevich D N, Jenkins S D, Lan S Y, Kennedy T A B and Kuzmich A 2005 Nature 438 833
[30] Zhang Y, Zhang Y, Zhang X H, Yu M, Cui C L and Wu J H 2012 Phys. Lett. A 376 656
[31] Appel J, Figueroa E, Korystov D, Lobino M and Lvovsky A I 2008 Phys. Rev. Lett. 100 093602
[32] Harris S E and Hau L V 1999 Phys. Rev. Lett. 82 4611
[33] Lukin M D and Imamoglu A 2001 Nature 413 273
[34] Kang H and Zhu Y 2003 Phys. Rev. Lett. 91 093601
[35] Li S J, Yang X D, Cao X M, Zhang C H, Xie C D and Wang H 2008 Phys. Rev. Lett. 101 073602
[36] Ba N, Wan R G, Jiang B N, Wang H, Wang D W, Zhang Y and Wu J H 2010 Opt. Commun. 283 1017
[37] Yan D, Wang B B, Bai W J, Liu B, Du X G and Ren C N 2019 Acta Phys. Sin. 68 084203 (in Chinese)
[38] Artoni M and LaRocca G C 2006 Phys. Rev. Lett. 96 073905
[39] Zhang Y, Xue Y, Wang G, Cui C L, Wang R G and Wu J H 2011 Opt. Express 19 2111
[40] Miller J L 2012 Phys. Today 65 14
[41] Baur S, Tiarks D, Rempe G and Durr S 2014 Phys. Rev. Lett. 112 073901
[42] Gorniaczyk H, Tresp C, Bienias P, ParisMandoki A and Hofferberth S 2016 Nat. Commun. 7 12480
[43] Zhao J D, Zhang H, Yang W G, Zhao J H, Jing M Y and Zhang L J 2021 Acta Phys. Sin. 70 103201 (in Chinese)
[44] Pritchard J D, Gauguet A and Weatherill K J 2011 J. Phys. B 44 184019
[45] Simons M T, Kautz M D, Holloway C L, Anderson D A, Raithel G, Stack D, St John M C and Su W 2018 J. Appl. Phys. 123 203105
[46] Xu S L, Zhou Q, Zhao D, Belic M R and Zhao Y 2020 Appl. Math. Lett. 106 106230
[47] Petrosyan D, Otterbach J and Fleischhauer M 2011 Phys. Rev. Lett. 107 213601
[48] Liu Y M, Yan D, Tian X D, Cui C L and Wu J H 2014 Phys. Rev. A 89 033839
[49] Ates C, Pohl T, Pattard T and Rost J M 2007 Phys. Rev. A 76 013413
[50] Hoening M, Abdussalam W, Fleischhauer M and Pohl T 2014 Phys. Rev. A 90 021603
[51] Sibali N, Wade C G, Adams C S, Weatherill K J and Pohl T 2016 Phys. Rev. A 94 011401
[52] Gorshkov A V, Manmana S R, Chen G, Ye J, Demler E, Lukin M D and Rey A M 2011 Phys. Rev. Lett. 107 115301
[53] Moses S A, Covey J P, Miecnikowski M T, Yan B, Gadway B, Ye J and Jin D S 2015 Science 6 659
[54] Zhang Z J, Peng Y D, Li C, Jia Z M, Li D H and Zeng Q T 2019 J. Opt. Soc. Am. B 36 2216
[55] Cooper N R and Shlyapnikov G V 2009 Phys. Rev. Lett. 103 155302
[56] Labuhn H, Barredo D, Ravets S, Léséleuc S, Macrí T, Lahaye T and Browaeys A 2016 Nature 534 667
[1] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[2] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[3] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[4] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[5] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[6] An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening
Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. Chin. Phys. B, 2022, 31(2): 024201.
[7] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[8] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[9] High-resolution three-dimensional atomic microscopy via double electromagnetically induced transparency
Abdul Wahab. Chin. Phys. B, 2021, 30(9): 094202.
[10] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[11] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
[12] Electromagnetically induced transparency and electromagnetically induced absorption in Y-type system
Kalan Mal, Khairul Islam, Suman Mondal, Dipankar Bhattacharyya, Amitava Bandyopadhyay. Chin. Phys. B, 2020, 29(5): 054211.
[13] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
[14] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[15] Two types of highly efficient electrostatic traps for single loading or multi-loading of polar molecules
Bin Wei(魏斌), Hengjiao Guo(郭恒娇), Yabing Ji(纪亚兵), Shunyong Hou(侯顺永), Jianping Yin(印建平). Chin. Phys. B, 2020, 29(4): 043701.
No Suggested Reading articles found!