ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms |
Shang-Yu Zhai(翟尚宇)1,2 and Jin-Hui Wu(吴金辉)1,2,† |
1 Center for Quantum Sciences, Northeast Normal University, Changchun 130117, China; 2 School of Physics, Northeast Normal University, Changchun 130024, China |
|
|
Abstract We study the steady optical response of a square lattice in which all trapped atoms are driven by a probe and a coupling fields into the ladder configuration of electromagnetically induced transparency (EIT). It turns out to be a many-body problem in the presence of van der Waals (vdW) interaction among atoms in the upmost Rydberg state, so Monte Carlo (MC) calculation based on density matrix equations have been done after introducing a sufficiently large cut-off radius. It is found that the absorption and dispersion of EIT spectra depends critically on a few key parameters like lattice dimension, unitary vdW shift, probe Rabi frequency, and coupling detuning. Through modulating these parameters, it is viable to change symmetries of the absorption and dispersion spectra and control on demand depth and position of the transparency window. Our MC calculation is expected to be instructive in understanding many-body quantum coherence effects and in manipulating non-equilibrium quantum phenomena by utilizing vdW interactions of Rydberg atoms.
|
Received: 19 October 2020
Revised: 11 December 2020
Accepted manuscript online: 30 December 2020
|
PACS:
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
32.80.Ee
|
(Rydberg states)
|
|
37.10.Gh
|
(Atom traps and guides)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12074061). |
Corresponding Authors:
Jin-Hui Wu
E-mail: jhwu@nenu.edu.cn
|
Cite this article:
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉) Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms 2021 Chin. Phys. B 30 074206
|
[1] Mohapatra A K, Jackson T R and Adams C S 2007 Phys. Rev. Lett. 98 113003 [2] Mauger S, Millen J and Jones M P A 2007 J. Phys. B: At. Mol. Opt. Phys. 40 F319 [3] Mohapatra A K, Bason M G, Butscher B, Weatherill K J and Adams C S 2008 Nat. Phys. 4 890 [4] Zhang L J, Bao S X, Zhang H and Raithel G 2017 arXiv: 1702.04842 [physics.atom-ph] [5] Zhao J, Zhu X, Zhang L, Feng Z, Li C and Jia S 2009 Opt. Express 17 15821 [6] Kubler H, Shaffer J P, Baluktsian T, Low R and Pfau T 2010 Nat. Photon. 4 112 [7] Tauschinsky A, Thijssen R M T, Whitlock S, van Linden van den Heuvell H B and Spreeuw R J C 2010 Phys. Rev. A 81 063411 [8] Ates C, Sevincli S and Pohl T 2011 Phys. Rev. A 83 041802 [9] Sedlacek J A, Schwettmann A, Kubler H and Shaffer J P 2013 Phys. Rev. Lett. 111 063001 [10] Brion E, Pedersen L H and Molmer K 2007 J. Phys. B 40 S159 [11] Muller M, Lesanovsky I, Weimer H, Buchler H P and Zoller P 2009 Phys. Rev. Lett. 102 170502 [12] Moller D, Madsen L B and Molmer K 2008 Phys. Rev. Lett. 100 170504 [13] Rao D D B and Molmer K 2013 Phys. Rev. Lett. 111 033606 [14] Wuster S, Mobius S, Genkin M, Eisfeld A and Rost J M 2013 Phys. Rev. A 88 063644 [15] Baur S, Tiarks D, Rempe G and Durr S 2014 Phys. Rev. Lett. 112 073901 [16] Tiarks D, Baur S, Schneider K, Durr S and Rempe G 2014 arXiv: 1404.3061 [quant-ph] [17] Zhang Q R, Wang B B, Zhang M L and Yan D 2018 Acta Phys. Sin. 67 034202 (in Chinese) [18] Peyronel T, Firstenberg O, Liang Q Y, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D and Vuletic V 2012 Nature 488 57 [19] Huang J F, Liao J Q and Sun C P 2013 Phys. Rev. A 87 023822 [20] Muller M M, Kolle A, Low R, Pfau T, Calarco T and Montangero S 2013 Phys. Rev. A 87 053412 [21] Tong D, Farooqi S M, Stanojevic J, Krishnan S, Zhang Y P, Cote R, Eyler E E and Gould P L 2004 Phys. Rev. Lett. 93 063001 [22] Harris S E 1997 Phys. Today 50 36 [23] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633 [24] Weatherill K J, Pritchard J D, Abel R P, Bason M G, Mohapatra A K and Adams C S 2008 J. Phys. B: At. Mol. Opt. Phys. 41 201002 [25] Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Jones M P A and Adams C S 2010 Phys. Rev. Lett. 105 193603 [26] Yang Z W, Jiao Y C, Han X X, Zhao J M and Jia S T 2016 Acta Phys. Sin. 65 103201 (in Chinese) [27] Yang Z W, Jiao Y C, Han X X, Zhao J M and Jia S T 2017 Acta Phys. Sin. 66 093202 (in Chinese) [28] Liu C, Dutton Z, Behroozi C H and Hau L 2001 Nature 409 490 [29] Chaneliere T, Matsukevich D N, Jenkins S D, Lan S Y, Kennedy T A B and Kuzmich A 2005 Nature 438 833 [30] Zhang Y, Zhang Y, Zhang X H, Yu M, Cui C L and Wu J H 2012 Phys. Lett. A 376 656 [31] Appel J, Figueroa E, Korystov D, Lobino M and Lvovsky A I 2008 Phys. Rev. Lett. 100 093602 [32] Harris S E and Hau L V 1999 Phys. Rev. Lett. 82 4611 [33] Lukin M D and Imamoglu A 2001 Nature 413 273 [34] Kang H and Zhu Y 2003 Phys. Rev. Lett. 91 093601 [35] Li S J, Yang X D, Cao X M, Zhang C H, Xie C D and Wang H 2008 Phys. Rev. Lett. 101 073602 [36] Ba N, Wan R G, Jiang B N, Wang H, Wang D W, Zhang Y and Wu J H 2010 Opt. Commun. 283 1017 [37] Yan D, Wang B B, Bai W J, Liu B, Du X G and Ren C N 2019 Acta Phys. Sin. 68 084203 (in Chinese) [38] Artoni M and LaRocca G C 2006 Phys. Rev. Lett. 96 073905 [39] Zhang Y, Xue Y, Wang G, Cui C L, Wang R G and Wu J H 2011 Opt. Express 19 2111 [40] Miller J L 2012 Phys. Today 65 14 [41] Baur S, Tiarks D, Rempe G and Durr S 2014 Phys. Rev. Lett. 112 073901 [42] Gorniaczyk H, Tresp C, Bienias P, ParisMandoki A and Hofferberth S 2016 Nat. Commun. 7 12480 [43] Zhao J D, Zhang H, Yang W G, Zhao J H, Jing M Y and Zhang L J 2021 Acta Phys. Sin. 70 103201 (in Chinese) [44] Pritchard J D, Gauguet A and Weatherill K J 2011 J. Phys. B 44 184019 [45] Simons M T, Kautz M D, Holloway C L, Anderson D A, Raithel G, Stack D, St John M C and Su W 2018 J. Appl. Phys. 123 203105 [46] Xu S L, Zhou Q, Zhao D, Belic M R and Zhao Y 2020 Appl. Math. Lett. 106 106230 [47] Petrosyan D, Otterbach J and Fleischhauer M 2011 Phys. Rev. Lett. 107 213601 [48] Liu Y M, Yan D, Tian X D, Cui C L and Wu J H 2014 Phys. Rev. A 89 033839 [49] Ates C, Pohl T, Pattard T and Rost J M 2007 Phys. Rev. A 76 013413 [50] Hoening M, Abdussalam W, Fleischhauer M and Pohl T 2014 Phys. Rev. A 90 021603 [51] Sibali N, Wade C G, Adams C S, Weatherill K J and Pohl T 2016 Phys. Rev. A 94 011401 [52] Gorshkov A V, Manmana S R, Chen G, Ye J, Demler E, Lukin M D and Rey A M 2011 Phys. Rev. Lett. 107 115301 [53] Moses S A, Covey J P, Miecnikowski M T, Yan B, Gadway B, Ye J and Jin D S 2015 Science 6 659 [54] Zhang Z J, Peng Y D, Li C, Jia Z M, Li D H and Zeng Q T 2019 J. Opt. Soc. Am. B 36 2216 [55] Cooper N R and Shlyapnikov G V 2009 Phys. Rev. Lett. 103 155302 [56] Labuhn H, Barredo D, Ravets S, Léséleuc S, Macrí T, Lahaye T and Browaeys A 2016 Nature 534 667 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|