Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 064204    DOI: 10.1088/1674-1056/24/6/064204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Algebraic and group treatments to nonlinear displaced number statesand their nonclassicality features: A new approach

N Asili Firouzabadia, M K Tavassolya b, M J Faghihic
a Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd, Iran;
b The Laboratory of Quantum Information Processing, Yazd University, Yazd, Iran;
c Physics and Photonics Department, Graduate University of Advanced Technology, Mahan, Kerman, Iran
Abstract  Recently, nonlinear displaced number states (NDNSs) have been manually introduced, in which the deformation function f(n) has been artificially added to the previously well-known displaced number states (DNSs). Indeed, just a simple comparison has been performed between the standard coherent state and nonlinear coherent state for the formation of NDNSs. In the present paper, after expressing enough physical motivation of our procedure, four distinct classes of NDNSs are presented by applying algebraic and group treatments. To achieve this purpose, by considering the DNSs and recalling the nonlinear coherent states formalism, the NDNSs are logically defined through an algebraic consideration. In addition, by using a particular class of Gilmore–Perelomov-type of SU(1,1) and a class of SU(2) coherent states, the NDNSs are introduced via group-theoretical approach. Then, in order to examine the nonclassical behavior of these states, sub-Poissonian statistics by evaluating Mandel parameter and Wigner quasi-probability distribution function associated with the obtained NDNSs are discussed, in detail.
Keywords:  displaced number state      nonlinear coherent state      Wigner function      nonclassical state  
Received:  17 June 2014      Revised:  11 December 2014      Accepted manuscript online: 
PACS:  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.50.-p (Quantum optics)  
  03.65.-w (Quantum mechanics)  
Corresponding Authors:  M J Faghihi     E-mail:  mj.faghihi@kgut.ac.ir
About author:  42.50.Ct; 42.50.Dv; 42.50.-p; 03.65.-w

Cite this article: 

N Asili Firouzabadi, M K Tavassoly, M J Faghihi Algebraic and group treatments to nonlinear displaced number statesand their nonclassicality features: A new approach 2015 Chin. Phys. B 24 064204

[1] Klauder J R and Skagerstam B S 1985 Coherent States: Applications in Physics and Mathematical Physics (Singapore: World Scientific)
[2] Schumacher B 1996 Phys. Rev. A 54 2614
[3] Kempe J 1999 Phys. Rev. A 60 910
[4] Bennett C H, Shor P W, Smolin J A and Thapliyal A V 1999 Phys. Rev. Lett. 83 3081
[5] Ali S T, Antoine J P and Gazeau J P 2000 Coherent States, Wavelets and Their Generalizations (New York: Springer)
[6] Honarasa G R, Tavassoly M K and Hatami M 2012 Chin. Phys. B 21 054208
[7] Tavassoly M K and Jalali H R 2013 Chin. Phys. B 22 084202
[8] Meekhof D M, Monroe C, King B E, Itano W M and Wineland D J 1996 Phys. Rev. Lett. 76 1796
[9] Zou X, Pahlke K and Mathis W 2002 Phys. Rev. A 65 064303
[10] Deleglise S, Dotsenko I, Sayrin C, Bernu J, Brune M, Raimond J M and Haroche S 2008 Nature 455 510
[11] Faghihi M J and Tavassoly M K 2013 J. Phys. B: At. Mol. Opt. Phys. 46 145506
[12] Faghihi M J and Tavassoly M K 2013 J. Opt. Soc. Am. B 30 2810
[13] Faghihi M J, Tavassoly M K and Bagheri Harouni M 2014 Laser Phys. 24 045202
[14] Faghihi M J, Tavassoly M K and Hatami M 2014 Physica A 407 100
[15] Hekmatara H and Tavassoly M K 2014 Opt. Commun. 319 121
[16] Baghshahi H R and Tavassoly M K 2014 Phys. Scr. 89 075101
[17] Baghshahi H R, Tavassoly M K and Behjat A 2014 Chin. Phys. B 23 074203
[18] Baghshahi H R, Tavassoly M K and Behjat A 2014 Commun. Theor. Phys. 62 430
[19] de Matos Filho R L and Vogel W 1996 Phys. Rev. A 54 4560
[20] Man'ko V I, Marmo G, Sudarshan E C G and Zaccaria F 1997 Phys. Scr. 55 528
[21] Tavassoly M K 2006 J. Phys. A: Math. Gen. 39 11583
[22] Tavassoly M K and Parsaiean A 2007 J. Phys. A: Math. Theor. 40 9905
[23] Tavassoly M K 2008 J. Phys. A: Math. Theor. 41 285305
[24] Honarasa G R, Tavassoly M K and Hatami M 2009 Phys. Lett. A 373 3931
[25] Honarasa G R, Tavassoly M K and Hatami M 2009 Opt. Commun. 282 2192
[26] Berrada K 2014 Chin. Phys. B 23 024208
[27] de Oliveira F A M, Kim M S, Knight P L and Buzek V 1990 Phys. Rev. A 41 2645
[28] Schleich W and Wheeler J A 1987 J. Opt. Soc. Am. B 4 1715
[29] Tavassoly M K 2010 Opt. Commun. 283 5081
[30] Honarasa G R, Tavassoly M K, Hatami M and Roknizadeh R 2011 Physica A 390 1381
[31] Safaeian O and Tavassoly M K 2011 J. Phys. A: Math. Theor. 44 225301
[32] Faghihi M J and Tavassoly M K 2011 Commun. Theor. Phys. 56 327
[33] Piroozi E and Tavassoly M K 2012 J. Phys. A: Math. Theor. 45 135301
[34] Ali S T, Roknizadeh R and Tavassoly M K 2004 J. Phys. A: Math. Gen. 37 4407
[35] Roknizadeh R and Tavassoly M K 2004 J. Phys. A: Math. Gen. 37 8111
[36] Roknizadeh R and Tavassoly M K 2005 J. Math. Phys. 46 042110
[37] Xu L J, Tan G B, Ma S J and Guo Q 2013 Chin. Phys. B 22 030311
[38] de Oliveira G C, de Almeida A R, Dantas C and Moraes A M 2005 Phys. Lett. A 339 275
[39] Roy B and Roy P 2000 J. Opt. B: Quantum Semiclas. Opt. 2 65
[40] Gilmore R 1974 Lie Groups, Lie Algebras and Some of Their Applications (New York: John Wiley & Sons)
[41] Nieto M M 1978 Phys. Rev. A 17 1273
[42] Miry S R and Tavassoly M K 2012 Phys. Scr. 85 035404
[43] Perelomov A M 1986 Generalized Coherent States and Their Applications: Modern Methods of Plant Analysis (Berlin: Springer-Verlag)
[44] Mandel L 1979 Opt. Lett. 4 205
[45] Wigner E 1932 Phys. Rev. 40 749
[46] Gerry C C and Knight P L 2005 Introductory Quantum Optics (Cambridge: Cambridge University Press)
[47] Vogel W and Welsch D G 2006 Quantum Optics (New York: John Wiley & Sons)
[48] Meng X G, Wang J S and Liang B L 2013 Chin. Phys. B 22 030307
[1] Margolus-Levitin speed limit across quantum to classical regimes based on trace distance
Shao-Xiong Wu(武少雄), Chang-Shui Yu(于长水). Chin. Phys. B, 2020, 29(5): 050302.
[2] Quantum-classical correspondence and mechanical analysis ofa classical-quantum chaotic system
Haiyun Bi(毕海云), Guoyuan Qi(齐国元), Jianbing Hu(胡建兵), Qiliang Wu(吴启亮). Chin. Phys. B, 2020, 29(2): 020502.
[3] Wigner function for squeezed negative binomial state and evolution of density operator for amplitude decay
Heng-Yun Lv(吕恒云), Ji-Suo Wang(王继锁), Xiao-Yan Zhang(张晓燕), Meng-Yan Wu(吴孟艳), Bao-Long Liang(梁宝龙), Xiang-Guo Meng(孟祥国). Chin. Phys. B, 2019, 28(9): 090302.
[4] Negativity of Wigner function and phase sensitivity of an SU(1,1) interferometer
Chun-Li Liu(刘春丽), Li-Li Guo(郭丽丽), Zhi-Ming Zhang(张智明), Ya-Fei Yu(於亚飞). Chin. Phys. B, 2019, 28(6): 060704.
[5] Manipulating transition of a two-component Bose-Einstein condensate with a weak δ-shaped laser
Bo Li(李博), Xiao-Jun Jiang(蒋小军), Xiao-Lin Li(李晓林), Wen-Hua Hai(海文华), Yu-Zhu Wang(王育竹). Chin. Phys. B, 2019, 28(10): 100303.
[6] Analytical and numerical investigations of displaced thermal state evolutions in a laser process
Chuan-Xun Du(杜传勋), Xiang-Guo Meng(孟祥国), Ran Zhang(张冉), Ji-Suo Wang(王继锁). Chin. Phys. B, 2017, 26(12): 120301.
[7] Quantum statistical properties of photon-added spin coherent states
G Honarasa. Chin. Phys. B, 2017, 26(11): 114202.
[8] Quantum metrology with two-mode squeezed thermal state: Parity detection and phase sensitivity
Heng-Mei Li(李恒梅), Xue-Xiang Xu(徐学翔), Hong-Chun Yuan(袁洪春), Zhen Wang(王震). Chin. Phys. B, 2016, 25(10): 104203.
[9] Comparison between photon annihilation-then-creation and photon creation-then-annihilation thermal states:Non-classical and non-Gaussian properties
Xu Xue-Xiang (徐学翔), Yuan Hong-Chun (袁洪春), Wang Yan (王燕). Chin. Phys. B, 2014, 23(7): 070301.
[10] Maximal entanglement from photon-added nonlinear coherent states via unitary beam splitters
K. Berrada. Chin. Phys. B, 2014, 23(2): 024208.
[11] New approach for deriving the exact time evolution of density operator for diffusive anharmonic oscillator and its Wigner distribution function
Meng Xiang-Guo (孟祥国), Wang Ji-Suo (王继锁), Liang Bao-Long (梁宝龙). Chin. Phys. B, 2013, 22(3): 030307.
[12] Nonclassicality and decoherence of coherent superposition operation of photon subtraction and photon addition on squeezed state
Xu Li-Juan (徐莉娟), Tan Guo-Bin (谭国斌), Ma Shan-Jun (马善钧), Guo Qin (郭琴). Chin. Phys. B, 2013, 22(3): 030311.
[13] A new type of photon-added squeezed coherent state and its statistical properties
Zhou Jun(周军), Fan Hong-Yi(范洪义), and Song Jun(宋军) . Chin. Phys. B, 2012, 21(7): 070301.
[14] Quantum phase distribution and the number–phase Wigner function of the generalized squeezed vacuum states associated with solvable quantum systems
G. R. Honarasa, M. K. Tavassoly, and M. Hatami . Chin. Phys. B, 2012, 21(5): 054208.
[15] Nonclassicality of a two-variable Hermite polynomial state
Tan Guo-Bin(谭国斌), Xu Li-Juan(徐莉娟), and Ma Shan-Jun(马善钧) . Chin. Phys. B, 2012, 21(4): 044210.
No Suggested Reading articles found!