ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Enhancement of the second harmonic generation from monolayer WS2 coupled with a silica microsphere |
Xiao-Zhuo Qi(祁晓卓)1,2, and Xi-Feng Ren(任希锋)1,2,† |
1. CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; 2. CAS Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract Monolayer transition metal dichalcogenides (TMDs) are widely used for integrated optical and photoelectric devices. Owing to their broken inversion symmetry, monolayer TMDs have a large second-order optical nonlinearity. However, the optical second-order nonlinear conversion efficiency of monolayer TMDs is still limited by the interaction length. In this work, we theoretically study the second harmonic generation (SHG) from monolayer tungsten sulfide (WS2) enhanced by a silica microsphere cavity. By tuning the position, size, and crystal orientation of the material, second-order nonlinear coupling can occur between the fundamental pump mode and different second harmonic cavity modes, and we obtain an optimal SHG conversion efficiency with orders of magnitude enhancement. Our work demonstrates that the microsphere cavity can significantly enhance SHG from monolayer 2D materials under flexible conditions.
|
Received: 01 March 2022
Revised: 11 April 2022
Accepted manuscript online:
|
PACS:
|
42.82.-m
|
(Integrated optics)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774333 and 62061160487) and the Fundamental Research Funds for the Central Universities. |
Corresponding Authors:
Xi-Feng Ren
E-mail: renxf@ustc.edu.cn
|
Cite this article:
Xiao-Zhuo Qi(祁晓卓), and Xi-Feng Ren(任希锋) Enhancement of the second harmonic generation from monolayer WS2 coupled with a silica microsphere 2022 Chin. Phys. B 31 104203
|
[1] Yu S, Wu X, Wang Y, Guo X and Tong L 2017 Adv. Mater. 29 1606128 [2] Gutiérrez H R, Perea-López N, Elías A L, Berkdemir A, Wang B, Lv R, López-Urías F, Crespi V H, Terrones H and Terrones M 2013 Nano Lett. 13 3447 [3] Liu D, Yu L, Xiong X, Yang L, Li Y, Li M, Li H O, Cao G, Xiao M, Xiang B, Min C, Guo G C, Ren X F and Guo G P 2016 Opt. Express 24 27554 [4] Yu L, Liu D, Qi X Z, Xiong X, Feng L T, Li M, Guo G P, Guo G C and Ren X F 2018 Chin. Phys. B 27 047302 [5] Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H and Eda G 2013 ACS Nano 7 791 [6] Zhou L, Fu H, Lv T, Wang C, Gao H, Li D, Deng L and Xiong W 2020 Nanomaterials 10 2263 [7] Autere A, Jussila H, Dai Y, Wang Y, Lipsanen H and Sun Z 2018 Adv. Mater. 30 1705963 [8] Ribeiro-Soares J, Janisch C, Liu Z, Elías A L, Dresselhaus M S, Terrones M, Cançado L G and Jorio A 2015 2D Mater. 2 045015 [9] Zhao M, Ye Z, Suzuki R, Ye Y, Zhu H, Xiao J, Wang Y, Iwasa Y and Zhang X 2016 Light Sci. Appl. 5 e16131 [10] Jiang H, Zheng L, Wang J, Xu M, Gan X, Wang X and Hang W 2021 Nanoscale 13 18103 [11] Janisch C, Wang Y, Ma D, Metha N, Elías A L, Perea-López N, Terrones M, Crespi V and Liu Z 2014 Sci. Rep. 4 5530 [12] Liu N, Yang X, Zhu Z, Chen F, Zhou Y, Xu J and Liu K 2022 Nanoscale 14 49 [13] Chen H, Corboliou V, Solntsev A S, Choi D Y, Vincenti M A, Ceglia D, Angelis C, Lu Y and Neshev D N 2017 Light Sci. Appl. 6 e17060 [14] Zuo Y, Yu W, Liu C, Chen X, Qiao R, Liang J, Zhou X, Wang J, Wu M, Zhao Y, Gao P, Wu S, Sun Z, Liu K, Bai X and Liu Z 2020 Nature Nanotech. 15 987 [15] Li W, Chen B, Meng C, Fang W, Xiao Y, Li X, Hu Z, Xu Y, Tong L, Wang H, Liu W, Bao J and Shen Y R 2014 Nano Lett. 14 955 [16] Chen J, Tan J, Wu G, Zhang X, Xu F and Lu Y 2019 Light Sci. Appl. 8 1 [17] Tan T, Yuan Z, Zhang H, Yan G, Zhou S, An N, Peng B, Soavi G, Rao Y and Yao B 2021 Nat. Commun. 12 6716 [18] Li X, Liu W, Song Y, Zhang C, Long H, Wang K, Wang B and Lu P 2019 Adv. Opt. Mater. 7 1801270 [19] Liu D, Qi X Z, Chiu K L, Taniguchi T, Ren X F and Guo G P 2018 Chin. Phys. B 27 087303 [20] Ye Y, Wong Z J, Lu X, Ni X, Zhu H, Chen X, Wang Y and Zhang X 2015 Nat. Photon. 9 733 [21] Qi X, Lo T W, Liu D, Feng L, Chen Y, Wu Y, Ren H, Guo G C, Lei D Y and Ren X F 2020 Nanophotonics 9 2097 [22] Sun L, Hu H, Zhan D, Yan J, Liu L, Teguh J S, Yeow E K L, Lee P S and Shen Z 2014 Small 10 1090 [23] Akselrod G M, Ming T, Argyropoulos C, Hoang T B, Lin Y, Ling Xi, Smith D R, Kong J and Mikkelsen M H 2015 Nano Lett. 15 3578 [24] Zheng D, Zhang S, Deng Q, Kang M, Nordlander P and Xu H 2017 Nano Lett. 17 3809 [25] Wu Y, Liu X, Qi X, Lu L, Guo G, Guo G C and Ren X F 2021 Appl. Phys. Lett. 118 104002 [26] Liu C P, Zhu X L, Zhang J S, Xu J, Wang Y M and Yu D P 2016 Chin. Phys. B 33 087303 [27] Wang H, Wen J, Wang W, Xu N, Liu P, Yan J, Chen H and Deng S 2019 ACS Nano 13 1739 [28] Wu S, Buckley S, Schaibley J R, Feng L, Yan J, Mandrus D G, Hatami F, Yao W, Vučković J, Majumdar A and Xu X 2015 Nature 520 69 [29] Zhang L, Gogna R, Burg W, Tutuc E and Deng H 2018 Nat. Commun. 9 713 [30] Hu G, Hong X, Wang K, Wu J, Xu H X, Zhao W, Liu W, Shuang Z, Garcia-Vidal, Wang B, Lu P and Qiu C W 2019 Nat. Photon. 13 467 [31] Chen J, Wang K, Long H, Han X, Hu H, Liu W, Wang B and Lu P 2018 Nano Lett. 18 1344 [32] Liu Z, Wang J, Chen B, Wei Y, Liu W and Liu J 2021 Nano Lett. 21 7405 [33] Shi J, Liang W Y, Raja S S, Sang Y, Zhang X Q, Chen C A, Wang Y, Yang X, Lee Y H, Ahn H and Gwo S 2018 Laser Photon. Rev. 12 1800188 [34] Shen Z, Zhang Y L, Chen Y, Zou C L, Xiao Y F, Zou X B, Sun F W, Guo G C and Dong C H 2016 Nat. Photon. 10 657 [35] Guo X, Zou C L and Tang H X 2016 Optica 3 1126 [36] Zhang X, Cao Q T, Wang Z, Liu Y, Qiu C W, Yang L, Gong Q and Xiao Y F 2019 Nat. Photon. 13 21 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|