High-energy picosecond single-pass multi-stage optical parametric generator and amplifier
Yang Yu(余洋)1,3,†, Zhao Liu(刘钊)1,†, Ke Liu(刘可)1,2,‡, Chao Ma(马超)1,3, Hong-Wei Gao(高宏伟)1,2, Xiao-Jun Wang(王小军)1,2, Yong Bo(薄勇)1,2, Da-Fu Cui(崔大复)1,2, and Qin-Jun Peng(彭钦军)1,2
1 Key Laboratory of Solid-state Lasers, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; 2 Key Laboratory of Functional Crystal and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; 3 University of Chinese Academy of Sciences, Beijing 100190, China
Abstract We demonstrate a new management of multi-stage optical parametric generator (OPG) and amplifier (OPA) to obtain high-energy picosecond sources with high beam quality. The setup of multi-stage OPG-OPA requires mode-matching between the pump beam and the stable mode of the OPG-OPA. In a proof-of-principle experiment, the single-pass multi-stage OPG-OPA consists of three walk-off compensated KTP crystal pairs and two lenses, pumped by an 86 ps, 1064 nm 10 kHz picosecond laser. The signal light at ~1.77 μm has an average output power of 502 mW with record energy up to 50.2 μJ. The beam quality factor of the signal light can be improved to after filtering out about 40% signal power. To the best of our knowledge, it is the first picosecond single-pass multi-stage OPG-OPA pumped at kHz regime.
Fund: This work was supported by the National Science Foundation for Young Scientists of China (Grant No. 61805259), and Youth Innovation Promotion Association, CAS, and Chinese Academy of Sciences funding (Grant No. ZDRW-KT-2019-4-01).
Corresponding Authors:
Ke Liu
E-mail: liuke0209@mails.ucas.ac.cn
Cite this article:
Yang Yu(余洋), Zhao Liu(刘钊), Ke Liu(刘可), Chao Ma(马超), Hong-Wei Gao(高宏伟), Xiao-Jun Wang(王小军), Yong Bo(薄勇), Da-Fu Cui(崔大复), and Qin-Jun Peng(彭钦军) High-energy picosecond single-pass multi-stage optical parametric generator and amplifier 2022 Chin. Phys. B 31 014204
[1] Junaid S, Kumar S C, Mathez M, Hermes M, Stone N, Shephero N, Ebrahim-Zadeh M, Tidemand-Lichtenberg P and Pedersen C 2019 Optica6 702 [2] Edwards G, Logan R, Copeland M, Reinisch L, Davidson J, Johnson B, Maciunas R, Mendenhall M, Ossoff R, Tribble J, Werkhaven J and Oday D 1994 Nature371 416 [3] Geiser P, Willer U, Walter D and Schade W 2006 Appl. Phys. B83 175 [4] Colosimo P, Doumy G, Blaga C I, Wheeler J, Hauri C, Catoire F, Tate J, Chirla R, March A M, Paulus G G, Muller H G, Agostini P and Dimauro L F 2008 Nat. Phys.4 386 [5] Wu Y, Ye H L, Shao C Y and Zhang J T 2012 Chin. Phys. B21 024210 [6] Burneika K, Ignatavicius M, Kabelka V, Piskarskas A and Stabinis A 1972 IEEE J. Quantum Electron.8 574 [7] Kumar S C, Casals J C, Parsa S, Zawilski K T, Schunemann P G and Ebrahim-Zadeh M 2018 Appl. Phys. B124 100 [8] Lamour T P, Kornaszewski L, Sun J H and Reid D T 2009 Opt. Express17 14229 [9] Petersen T, Zuegel J D and Bromage J 2017 Opt. Express25 8840 [10] Kienle F, Teh P S, Alam S-U, Gawith C B E, Hanna D C, Richardson D J and Shepherd D P 2010 Opt. Lett.35 3580 [11] Kienle F, Chen K K, Alam S U, Gawith C B E and Shepherd D P 2010 Opt. Express18 7602 [12] Lamour T P and Reid D T 2011 Opt. Express19 17557 [13] Xu L, Chan H Y, Alam S U, Richardson D J and Shepherd D P 2015 Opt. Lett.40 3288 [14] Nagashima K, Ochi Y and Itakura R 2020 Opt. Lett.45 674 [15] Wei K H, Jiang P P, Wu B, Tao C and Shen Y H 2015 Chin. Phys. B24 24217 [16] Chuchumishev D, Marchev G, Buchvarov I, Pasiskevicius V, Laurell F and Petrov V 2013 Laser Phys. Lett.10 115404 [17] Chuchumishev D, Gaydardzhiev A, Fiebig T and Buchvarov I 2013 Opt. Lett.38 3347 [18] Marchev G, Pirzio F, Agnesi A, Reali G, Petrov V, Tyazhev A, Schunemann P G and Zawilski K T 2013 Opt. Commun.291 326 [19] Marchev G, Dallocchio P, Pirzio F, Agnesi A, Reali G, Petrov V, Tyazhev A, Pasiskevicius V, Thilmann N and Laurell F 2012 Appl. Phys. B109 211 [20] He L J, Liu K, Bo Y, Liu Z, Wang X J, Yang F, Yuan L, Peng Q J, Cui D F and Xu Z Y 2018 Opt. Lett.43 539 [21] Fu Q, Xu L, Liang S J, Shepherd D P, Richardson D J and Alam S U 2018 IEEE J. Sel. Top. Quantum Electron.24 5100706 [22] Csanakova B, Novak O, Roskot L, Muzik J, Jelinkova H, Smrz M and Mocek T 2019 High-Power, High-Energy, and High-Intensity Laser Technology IV, edited by Hein J and Butcher T J (Bellingham: SPIE-Int Soc Optical Engineering) [23] Nandy B, Chaitanya Kumar S and Ebrahim-Zadeh M 2020 Opt. Lett.45 6126 [24] Nagashima K, Ochi Y and Itakura R 2019 J. Opt. Soc. Am. B36 3389 [25] Fan J, Chen W, Gu C, Song Y and Hu M 2017 Opt. Express25 24594 [26] Mei J, Zhong K, Liu Y, Shi J, Qiao H, Xu D, Shi W and Yao J 2018 Opt. Commun.426 119 [27] Seres J and Hebling J 2000 J. Opt. Soc. Am. B17 741 [28] Harimoto T and Yamakawa K 2003 Opt. Express11 939
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.