Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 014204    DOI: 10.1088/1674-1056/abff46
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High-energy picosecond single-pass multi-stage optical parametric generator and amplifier

Yang Yu(余洋)1,3,†, Zhao Liu(刘钊)1,†, Ke Liu(刘可)1,2,‡, Chao Ma(马超)1,3, Hong-Wei Gao(高宏伟)1,2, Xiao-Jun Wang(王小军)1,2, Yong Bo(薄勇)1,2, Da-Fu Cui(崔大复)1,2, and Qin-Jun Peng(彭钦军)1,2
1 Key Laboratory of Solid-state Lasers, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
2 Key Laboratory of Functional Crystal and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
3 University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  We demonstrate a new management of multi-stage optical parametric generator (OPG) and amplifier (OPA) to obtain high-energy picosecond sources with high beam quality. The setup of multi-stage OPG-OPA requires mode-matching between the pump beam and the stable mode of the OPG-OPA. In a proof-of-principle experiment, the single-pass multi-stage OPG-OPA consists of three walk-off compensated KTP crystal pairs and two lenses, pumped by an 86 ps, 1064 nm 10 kHz picosecond laser. The signal light at ~1.77 μm has an average output power of 502 mW with record energy up to 50.2 μJ. The beam quality factor of the signal light can be improved to $M_{x}^{2} \times M_{y}^{2}=1.87\times 2.16$ after filtering out about 40% signal power. To the best of our knowledge, it is the first picosecond single-pass multi-stage OPG-OPA pumped at kHz regime.
Keywords:  high-energy      picosecond      optical parametric frequency conversion  
Received:  16 April 2021      Revised:  06 May 2021      Accepted manuscript online:  10 May 2021
PACS:  42.65.Yj (Optical parametric oscillators and amplifiers)  
  42.65.Lm (Parametric down conversion and production of entangled photons)  
  42.72.Ai (Infrared sources)  
Fund: This work was supported by the National Science Foundation for Young Scientists of China (Grant No. 61805259), and Youth Innovation Promotion Association, CAS, and Chinese Academy of Sciences funding (Grant No. ZDRW-KT-2019-4-01).
Corresponding Authors:  Ke Liu     E-mail:  liuke0209@mails.ucas.ac.cn

Cite this article: 

Yang Yu(余洋), Zhao Liu(刘钊), Ke Liu(刘可), Chao Ma(马超), Hong-Wei Gao(高宏伟), Xiao-Jun Wang(王小军), Yong Bo(薄勇), Da-Fu Cui(崔大复), and Qin-Jun Peng(彭钦军) High-energy picosecond single-pass multi-stage optical parametric generator and amplifier 2022 Chin. Phys. B 31 014204

[1] Junaid S, Kumar S C, Mathez M, Hermes M, Stone N, Shephero N, Ebrahim-Zadeh M, Tidemand-Lichtenberg P and Pedersen C 2019 Optica 6 702
[2] Edwards G, Logan R, Copeland M, Reinisch L, Davidson J, Johnson B, Maciunas R, Mendenhall M, Ossoff R, Tribble J, Werkhaven J and Oday D 1994 Nature 371 416
[3] Geiser P, Willer U, Walter D and Schade W 2006 Appl. Phys. B 83 175
[4] Colosimo P, Doumy G, Blaga C I, Wheeler J, Hauri C, Catoire F, Tate J, Chirla R, March A M, Paulus G G, Muller H G, Agostini P and Dimauro L F 2008 Nat. Phys. 4 386
[5] Wu Y, Ye H L, Shao C Y and Zhang J T 2012 Chin. Phys. B 21 024210
[6] Burneika K, Ignatavicius M, Kabelka V, Piskarskas A and Stabinis A 1972 IEEE J. Quantum Electron. 8 574
[7] Kumar S C, Casals J C, Parsa S, Zawilski K T, Schunemann P G and Ebrahim-Zadeh M 2018 Appl. Phys. B 124 100
[8] Lamour T P, Kornaszewski L, Sun J H and Reid D T 2009 Opt. Express 17 14229
[9] Petersen T, Zuegel J D and Bromage J 2017 Opt. Express 25 8840
[10] Kienle F, Teh P S, Alam S-U, Gawith C B E, Hanna D C, Richardson D J and Shepherd D P 2010 Opt. Lett. 35 3580
[11] Kienle F, Chen K K, Alam S U, Gawith C B E and Shepherd D P 2010 Opt. Express 18 7602
[12] Lamour T P and Reid D T 2011 Opt. Express 19 17557
[13] Xu L, Chan H Y, Alam S U, Richardson D J and Shepherd D P 2015 Opt. Lett. 40 3288
[14] Nagashima K, Ochi Y and Itakura R 2020 Opt. Lett. 45 674
[15] Wei K H, Jiang P P, Wu B, Tao C and Shen Y H 2015 Chin. Phys. B 24 24217
[16] Chuchumishev D, Marchev G, Buchvarov I, Pasiskevicius V, Laurell F and Petrov V 2013 Laser Phys. Lett. 10 115404
[17] Chuchumishev D, Gaydardzhiev A, Fiebig T and Buchvarov I 2013 Opt. Lett. 38 3347
[18] Marchev G, Pirzio F, Agnesi A, Reali G, Petrov V, Tyazhev A, Schunemann P G and Zawilski K T 2013 Opt. Commun. 291 326
[19] Marchev G, Dallocchio P, Pirzio F, Agnesi A, Reali G, Petrov V, Tyazhev A, Pasiskevicius V, Thilmann N and Laurell F 2012 Appl. Phys. B 109 211
[20] He L J, Liu K, Bo Y, Liu Z, Wang X J, Yang F, Yuan L, Peng Q J, Cui D F and Xu Z Y 2018 Opt. Lett. 43 539
[21] Fu Q, Xu L, Liang S J, Shepherd D P, Richardson D J and Alam S U 2018 IEEE J. Sel. Top. Quantum Electron. 24 5100706
[22] Csanakova B, Novak O, Roskot L, Muzik J, Jelinkova H, Smrz M and Mocek T 2019 High-Power, High-Energy, and High-Intensity Laser Technology IV, edited by Hein J and Butcher T J (Bellingham: SPIE-Int Soc Optical Engineering)
[23] Nandy B, Chaitanya Kumar S and Ebrahim-Zadeh M 2020 Opt. Lett. 45 6126
[24] Nagashima K, Ochi Y and Itakura R 2019 J. Opt. Soc. Am. B 36 3389
[25] Fan J, Chen W, Gu C, Song Y and Hu M 2017 Opt. Express 25 24594
[26] Mei J, Zhong K, Liu Y, Shi J, Qiao H, Xu D, Shi W and Yao J 2018 Opt. Commun. 426 119
[27] Seres J and Hebling J 2000 J. Opt. Soc. Am. B 17 741
[28] Harimoto T and Yamakawa K 2003 Opt. Express 11 939
[1] Numerical investigation of the nonlinear spectral broadening aiming at a few-cycle regime for 10 ps level Nd-doped lasers
Xi-Hang Yang(杨西杭), Fen-Xiang Wu(吴分翔), Yi Xu(许毅), Jia-Bing Hu(胡家兵), Pei-Le Bai(白培乐), Hai-Dong Chen(陈海东), Xun Chen(陈洵), and Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2022, 31(9): 094206.
[2] Picosecond terahertz pump-probe realized from Chinese terahertz free-electron laser
Chao Wang(王超), Wen Xu(徐文), Hong-Ying Mei(梅红樱), Hua Qin(秦华), Xin-Nian Zhao(赵昕念), Hua Wen(温华), Chao Zhang(张超), Lan Ding(丁岚), Yong Xu(徐勇), Peng Li(李鹏), Dai Wu(吴岱), Ming Li(黎明). Chin. Phys. B, 2020, 29(8): 084101.
[3] Study on γ-ray source from the resonant reaction 19F(p,αγ)16O at Ep=340 keV
Fu-Long Liu(刘伏龙), Wan-Sha Yang(杨婉莎), Ji-Hong Wei(魏继红), Di Wu(吴笛), Yang-Fan He(何阳帆), Yu-Chen Li(李雨尘), Tian-Li Ma(马田丽), Yang-Ping Shen(谌阳平), Qi-Wen Fan(樊启文), Chuang-Ye He(贺创业), Bing Guo(郭冰), Nai-Yan Wang(王乃彦). Chin. Phys. B, 2020, 29(7): 070702.
[4] High gain fiber-solid hybrid double-passing end-pumped Nd: YVO4 picosecond amplifier with high beam quality
Xueyan Dong(董雪岩), Pingxue Li(李平雪), Shun Li(李舜), Dongsheng Wang(王东生). Chin. Phys. B, 2020, 29(5): 054207.
[5] Influence of low ambient pressure on the performance of a high-energy array surface arc plasma actuator
Bing-Liang Tang(唐冰亮), Shan-Guang Guo(郭善广), Hua Liang(梁华)†, and Meng-Xiao Tang(唐孟潇). Chin. Phys. B, 2020, 29(10): 105204.
[6] Effect of thermally induced birefringence on high power picosecond azimuthal polarization Nd:YAG laser system
Hongpan Peng(彭红攀), Ce Yang(杨策), Shang Lu(卢尚), Ning Ma(马宁), Meng Chen(陈檬). Chin. Phys. B, 2019, 28(2): 024205.
[7] Vibration-assisted coherent excitation energy transfer in a detuned dimer
Xin Wang(王信), Hao Chen(陈浩), Chen-yu Li(李晨宇), Hong-rong Li(李宏荣). Chin. Phys. B, 2017, 26(3): 037105.
[8] Phonon-assisted excitation energy transfer in photosynthetic systems
Hao Chen(陈浩), Xin Wang(王信), Ai-Ping Fang(方爱平), Hong-Rong Li(李宏荣). Chin. Phys. B, 2016, 25(9): 098201.
[9] High-energy femtosecond Yb-doped all-fiber monolithic chirped-pulse amplifier at repetition rate of 1 MHz
Zhi-Guo Lv(吕志国), Hao Teng(滕浩), Li-Na Wang(王立娜), Jun-Li Wang(王军利), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(9): 094208.
[10] Nonlinear compression of picosecond chirped pulse from thin-disk amplifier system through a gas-filled hollow-core fiber
Jun Lu(陆俊), Zhi-Yuan Huang(黄志远), Ding Wang(王丁), Yi Xu(许毅), Yan-Qi Liu(刘彦祺), Xiao-Yang Guo(郭晓杨), Wen-Kai Li(黎文开), Fen-Xiang Wu(吴分翔), Zheng-Zheng Liu(刘征征), Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2016, 25(12): 124207.
[11] Picosecond pulses compression at 1053-nm center wavelength by using a gas-filled hollow-core fiber compressor
Huang Zhi-Yuan (黄志远), Wang Ding (王丁), Leng Yu-Xin (冷雨欣), Dai Ye (戴晔). Chin. Phys. B, 2015, 24(1): 014212.
[12] Phase transition model of water flow irradiated by high-energy laser in a chamber
Wei Ji-Feng (魏继锋), Sun Li-Qun (孙利群), Zhang Kai (张凯), Hu Xiao-Yang (胡晓阳). Chin. Phys. B, 2014, 23(7): 074209.
[13] Generation of high-energy dual-wavelength domain wall pulse with low repetition rate in an HNLF-based fiber ring laser
Luo Zhi-Chao (罗智超), Lin Zhen-Bin (林振彬), Li Jin-Yu (李金玉), Zhu Peng-Fei (朱鹏飞), Ning Qiu-Yi (宁秋奕), Xing Xiao-Bo (邢晓波), Luo Ai-Ping (罗爱平), Xu Wen-Cheng (徐文成). Chin. Phys. B, 2014, 23(6): 064203.
[14] Different supercontinuum generation processes in photonic crystal fibers pumped with a 1064-nm picosecond pulse
Chen Hong-Wei (谌鸿伟), Jin Ai-Jun (靳爱军), Chen Sheng-Ping (陈胜平), Hou Jing (侯静), Lu Qi-Sheng (陆启生). Chin. Phys. B, 2013, 22(8): 084205.
[15] Laser diode end-pumped Nd:YVO4 regenerative amplifier for picosecond pulses
Zhang Zi-Long (张子龙), Liu Qiang (柳强), Yan Ping (闫平), Xia Paketi (夏帕克提), Gong Ma-Li (巩马理). Chin. Phys. B, 2013, 22(5): 054206.
No Suggested Reading articles found!