1 School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 University of Chinese Academy of Sciences(CAS), Beijing 100049, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China; 5 CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
Abstract We report on an idler-resonant femtosecond optical parametrical oscillator (OPO) based on BiB3O6 (BiBO) crystal, synchronously pumped by a frequency-doubled, mode-locked Yb:KGW laser at 515 nm. The idler wavelengths of OPO can be tuned from 1100 nm to 1540 nm. At a repetition rate of 75.5 MHz, the OPO generates as much as 400 mW of idler power with 3.1 W of pump power, the corresponding pulse duration is 80 fs, which is 1.04 times of Fourier transform-limited (FTL) pulse duration at 1305 nm. In addition, the OPO exhibits excellent beam quality with M2 < 1.8 at 1150 nm. To the best of our knowledge, this is the first idler-resonant femtosecond OPO pumped by 515 nm.
Fund: Project supported by Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2018B090904003), the National Natural Science Foundation of China (Grant Nos. 11774410 and 91850209), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB16030200).
Jinfang Yang(杨金芳), Zhaohua Wang(王兆华), Jiajun Song(宋贾俊), Renchong Lv(吕仁冲), Xianzhi Wang(王羡之), Jiangfeng Zhu(朱江峰), and Zhiyi Wei(魏志义) A 515-nm laser-pumped idler-resonant femtosecond BiB3O6 optical parametric oscillator 2022 Chin. Phys. B 31 014213
[1] Liu T M, Krtner F X, Fujimoto J G and Sun C K 2005 Opt. Lett.30 439 [2] Resan B, Brunner F, Rohrbacher A, Ammann H and Weingarten K J 2012 Multiphoton Microscopy in the Biomedical Sciences XII, January 22-24, 2012, San Francisco, CA, USA, 82262Y [3] Cleff C, Epping J, Gross P and Fallnich C 2011 Appl. Phys. B103 795 [4] Jurna M, Korterik J P, Offerhaus H L and Otto C 2006 Appl. Phys. Lett.89 251116 [5] Ni X, Jia KP, Wang X H, Liu H Y, Guo J, Huang S W, Yao B C, Sernicola N, Wang Z L, Lv X J, Zhao G, Xie Z D and Zhu S N 2021 Chin. Phys. Lett.38 064201 [6] Lin X C, Zhang Y, Kong Y P, Zhang J, Yao A Y, Hou W, Cui D F, Li R N, Xu Z Y and Li J 2004 Chin. Phys. Lett.21 98 [7] Liu J L, Liu Q, Li H, Li P and Zhang K S 2011 Chin. Phys. B20 114215 [8] Park J E, Jeong T Y, Jho Y D, Kim G H and Yee K J 2019 Opt. Express27 15891 [9] Esteban-Martin A, Ramaiah-Badarla V, Petrov V and Ebrahim-Zadeh M 2011 Opt. Lett.36 1671 [10] Min C K and Joo T 2005 Opt. Lett.30 1855 [11] Zhu J F, Zhong X, Teng H, Sun J H and Wei Z Y 2007 Chin. Phys. Lett.24 2603 [12] Xu L, Shepherd D P, Richardson D J and Price Jonathan H V 2014 Conference on Lasers and Electro-Optics (CLEO), June 08-13 2014, San Jose, CA, USA [13] Ma X, Tian J R, Zhang X P, Song Y R and Wang L 2010 High-Power Lasers and Applications V, October 18-19, 2010, Beijing, China 7843 78431D [14] Tillman K A, Reid D T, Artigas D and Jiang T Y 2004 Optical Society of America Journal B21 1551 [15] Zhu J F, Xu L, Lin Q F, Zhong X, Han H N and Wei Z Y 2013 Chin. Phys. B22 054210 [16] Liu S D, Wang Z W, Zhang B T, He J L, Hou J, Yang K J, Wang R H and Liu X M 2014 Chin. Phys. Lett.31 024204 [17] Cao Y F, Meng X H, Wang J L, Wang Z H, Cheng M Y, Zhu J F and Wei Z Y 2019 Chin. Phys. B28 044205 [18] Zhang Y, Wang J, Teng H, Fang S B, Wang J L, Chang G Q and Wei Z Y 2021 Opt. Lett.46 3115 [19] Tian W L, Wang Z H, Zhu J F and Wei Z Y 2016 Chin. Phys. B25 014207 [20] Gu C L, Hu M L, Fan J T, Song Y J, Liu B W and Wang C Y 2014 Opt. Lett.39 3896 [21] Vengelis J, Staseviclus I, Stankevicitute K, Jarutis V, Grigonis R, Vengris M and Sirutkaitis V 2015 Opt. Commun.338 277 [22] Tian W L, Wang Z H, Meng X H, Zhang N H, Zhu J F and Wei Z Y 2016 Opt. Lett.41 4851 [23] Meng X H, Wang Z H, Tian W L, Fang S B and Wei Z Y 2017 Appl. Phys. B124 9 [24] Meng X H, Wang Z H, Tian W L, Song J J, Wang X Z, Zhu J F and Wei Z Y 2019 Appl. Phys. B125 200 [25] Song J J, Meng X H, Wang Z H, Wang X Z, Tian W L, Zhu J F, Fang S B, Teng H and Wei Z Y 2019 Chin. Phys. Lett.36 124206 [26] Song J J, Meng X H, Wang Z H, Wang X Z, Tian W L, Zhu J F, Fang S B, Teng, H and Wei Z Y. 2020 Chin. Opt. Lett.18 033201 [27] Lang T, Binhammer T, Rausch S, Palmer G, Emons M, Schultze M, Harth A and Morgner U 2012 Opt. Express20 912 [28] Peng Y F, Wang W M, Wei X B and Li D M 2009 Opt. Lett.34 2897 [29] Parsa S, Kumar S C, Nandy B and Ebrahim-Zadeh M 2019 Opt. Express27 25436 [30] Xu L, Feehan J S, Shen L, Peacock A C, Shepherd D P, Richardson D J and Price Jonathan H V 2014 Appl. Phys. B117 987 [31] Kienle F, Teh P S, Lin D J, Alam S U, Price Jonathan H V, Hanna D C, Richardson D J and Shepherd D P 2012 Opt. Express20 7008
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.