Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 050502    DOI: 10.1088/1674-1056/24/5/050502
Special Issue: TOPICAL REVIEW — Precision measurement and cold matters
TOPICAL REVIEW—Precision measurement and cold matters Prev   Next  

Three-dimensional spin–orbit coupled Fermi gases: Fulde–Ferrell pairing, Majorana fermions, Weyl fermions, and gapless topological superfluidity

Xia-Ji Liua, Hui Hua, Han Pub c
a Center for Quantum and Optical Science, Swinburne University of Technology, Melbourne 3122, Australia;
b Department of Physics and Astronomy, and Rice Quantum Institute, Rice University, Houston, TX 77251, USA;
c Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China
Abstract  We theoretically investigate a three-dimensional Fermi gas with Rashba spin–orbit coupling in the presence of both out-of-plane and in-plane Zeeman fields. We show that, driven by a sufficiently large Zeeman field, either out-of-plane or in-plane, the superfluid phase of this system exhibits a number of interesting features, including inhomogeneous Fulde–Ferrell pairing, gapped or gapless topological order, and exotic quasi-particle excitations known as Weyl fermions that have linear energy dispersions in momentum space (i.e., massless Dirac fermions). The topological superfluid phase can have either four or two topologically protected Weyl nodes. We present the phase diagrams at both zero and finite temperatures and discuss the possibility of their observation in an atomic Fermi gas with synthetic spin–orbit coupling. In this context, topological superfluid phase with an imperfect Rashba spin–orbit coupling is also studied.
Keywords:  Fulde–      Ferrell superfluid      topological superfluid      spin–      orbit coupling  
Received:  14 November 2014      Revised:  02 December 2014      Accepted manuscript online: 
PACS:  05.30.Fk (Fermion systems and electron gas)  
  03.75.Hh (Static properties of condensates; thermodynamical, statistical, and structural properties)  
  03.75.Ss (Degenerate Fermi gases)  
  67.85.-d (Ultracold gases, trapped gases)  
Fund: Project supported by the ARC Discovery Projects (Grant Nos. FT140100003, FT130100815, DP140103231, and DP140100637), the National Basic Research Program of China (Grant No. 2011CB921502), the US National Science Foundation, and the Welch Foundation (Grant No. C-1669).
Corresponding Authors:  Han Pu     E-mail:  hpu@rice.edu
About author:  05.30.Fk; 03.75.Hh; 03.75.Ss; 67.85.-d

Cite this article: 

Xia-Ji Liu, Hui Hu, Han Pu Three-dimensional spin–orbit coupled Fermi gases: Fulde–Ferrell pairing, Majorana fermions, Weyl fermions, and gapless topological superfluidity 2015 Chin. Phys. B 24 050502

[1] Bloch I, Dalibard J and Nascimbéne S 2012 Nat. Phys. 8 267
[2] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[3] Lin Y J, Jiménez-Garciia K and Spielman I B 2011 Nature 471 83
[4] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[5] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[6] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[7] Yip S K 2014 Annu. Rev. Condens. Matter Phys. 5 15
[8] Zhang J, Liu X J, Hu H and Pu H 2014 Annual Review of Cold Atoms and Molecules Vol. 2 (Singapore: World Scientific Publishing) Chap. 2
[9] Zhai H 2015 Rep. Prog. Phys. 78 026001
[10] Xu Y and Zhang C 2015 Int. J. Mod. Phys. B 29 1530001
[11] Vyasanakere j P, Zhang S and Shenoy V B 2011 Phys. Rev. B 84 014512
[12] Zhu S L, Shao L B, Wang Z D and Duan L M 2011 Phys. Rev. Lett. 106 100404
[13] Hu H, Jiang L, Liu X J and Pu H 2011 Phys. Rev. Lett. 107 195304
[14] Yu Z Q and Zhai H 2011 Phys. Rev. Lett. 107 195305
[15] Gong M, Tewari S and Zhang C 2011 Phys. Rev. Lett. 107 195303
[16] Jiang L, Liu X J, Hu H and Pu H 2011 Phys. Rev. A 84 063618
[17] Liu X J, Jiang L, Pu H and Hu H 2012 Phys. Rev. A 85 021603
[18] Zhou K and Zhang Z 2012 Phys. Rev. Lett. 108 025301
[19] He L and Huang X G 2012 Phys. Rev. Lett. 108 145302
[20] Anderson B M, Juzeliūnas G, Galitski V M and Spielman I B 2012 , Phys. Rev. Lett. 108 235301
[21] Gong M, Chen G, Jia S and Zhang C 2012 Phys. Rev. Lett. 109 105302
[22] Seo K, Han L and Sá de Melo C A R 2012 Phys. Rev. Lett. 109 105303
[23] Liu X J and Hu H 2012 Phys. Rev. A 85 033622
[24] Wei R and Mueller E J 2012 Phys. Rev. A 86 063604
[25] Hu H, Jiang L, Pu H, Chen Y and Liu X J 2013 Phys. Rev. Lett. 110 020401
[26] He L and Huang X G 2013 Ann. Phys. 337 163
[27] Zheng Z, Gong M, Zou X, Zhang C and Guo G C 2013 Phys. Rev. A 87 031602
[28] Dong L, Jiang L, Hu H and Pu H 2013 Phys. Rev. A 87 043616
[29] Wu F, Guo G C, Zhang W and Yi W 2013 Phys. Rev. Lett. 110 110401
[30] Liu X J and Hu H 2013 Phys. Rev. A 87 051608
[31] Dong L, Jiang L and Pu H 2013 New J. Phys. 15 075014
[32] Zhou X F, Guo G C, Zhang W and Yi W 2013 Phys. Rev. A 87 063606
[33] Hu H and Liu X J 2013 New J. Phys. 15 093037
[34] Seo K, Zhang C and Tewari S 2013 Phys. Rev. A 87 063618
[35] Iskin M 2013 Phys. Rev. A 88 013631
[36] Xu Z F, You L and Ueda M 2013 Phys. Rev. A 87 063634
[37] Anderson B M, Spielman I B and Juzeliūnas G 2013 Phys. Rev. Lett. 111 125301
[38] Chen C 2013 Phys. Rev. Lett. 111 235302
[39] Liu X J and Hu H 2013 Phys. Rev. A 88 023622
[40] Qu C, Zheng Z, Gong M, Xu Y, Mao L, Zou X, Guo G C and Zhang C 2013 Nat. Comm. 4 2710
[41] Zhang W and Yi W W 2013 Nat. Comm. 4 2711
[42] Shenoy V B 2013 Phys. Rev. A 88 033609
[43] Liu X J 2013 Phys. Rev. A 88 043607
[44] Hu H, Dong L, Cao Y, Pu H and Liu X J 2014 Phys. Rev. A 90 033624
[45] Xu Y, Chu R and Zhang C 2014 Phys. Rev. Lett. 112 136402
[46] Cao Y, Zou S H, Liu X J, Yi S, Long G L and Hu H 2014 Phys. Rev. Lett. 113 115302
[47] Devreese J P A, Tempere J and Sá de Melo C A R 2014 Phys. Rev. Lett. 113 165304
[48] Jiang L, Tiesinga E, Liu X J, Hu H and Pu H 2014 Phys. Rev. A 90 053606
[49] Zheng Z, Pu H, Zou X and Guo G C 2014 Phys. Rev. A 90 063623
[50] Cao Y, Liu X J, He L, Long G L and Hu H 2014 arXiv:1410.0987
[51] Wang P, Yu Z Q, Fu Z, Miao J, Huang L, Chai S, Zhai H and Zhang J 2012 Phys. Rev. Lett. 109 095301
[52] Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah Z, Bakr W S and Zwierlein M W 2012 Phys. Rev. Lett. 109 095302
[53] Williams R A, Beeler M C, LeBlanc L J, Jiménez-García K and Spielman I B 2013 Phys. Rev. Lett. 111 095301
[54] Fu F, Huang L, Meng Z, Wang P, Liu X J, Pu H, Hu H and Zhang J 2013 Phys. Rev. A 87 053619
[55] Wilczek F 2009 Nat. Phys. 5 614
[56] Sau J D and Tewari S 2012 Phys. Rev. B 86 104509
[57] Fulde P and Ferrell R A 1964 Phys. Rev. 135 A550
[58] Giorgini S, Pitaevskii L P and Stringari S 2008 Rev. Mod. Phys. 80 1215
[59] Barzykin V and Gor'kov L P 2002 Phys. Rev. Lett. 89 227002
[60] Yip S K 2002 Phys. Rev. B 65 144508
[61] Agterberg D F and Kaur R P 2007 Phys. Rev. B 75 064511
[62] Dimitrova O and Feigel'man M V 2007 Phys. Rev. B 76 014522
[63] Michaeli K, Potter A C and Lee P A 2012 Phys. Rev. Lett. 108 117003
[64] Wong C L M, Liu J, Law K T and Lee P A 2013 Phys. Rev. B 88 060504
[65] This is a branch cut at kz=0 to a 3D surface plot of the energy spectrum, as shown, for example, in Figs. 2(b) and 2(c)
[66] Ku M J H, Sommer A T, Cheuk L W and Zwierlein M W 2012 Science 335 563
[67] Hu H, Liu X J and Drummond P D 2006 Europhys. Lett. 74 574
[68] Hu H, Liu X J and Drummond P D 2008 Phys. Rev. A 77 061605
[1] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[2] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[3] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[4] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[5] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[6] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[7] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[8] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[9] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[10] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[11] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[12] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[13] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[14] Kondo screening cloud in a superconductor with mixed s-wave and p-wave pairing states
Zhen-Zhen Huang(黄真真), Xiong-Tao Peng(彭雄涛), Wan-Sheng Wang(王万胜), and Jin-Hua Sun(孙金华). Chin. Phys. B, 2022, 31(10): 107101.
[15] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
No Suggested Reading articles found!