Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 048501    DOI: 10.1088/1674-1056/24/4/048501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Enhanced near-infrared responsivity of silicon photodetector by the impurity photovoltaic effect

Yuan Ji-Ren (袁吉仁)a b, Huang Hai-Bin (黄海宾)a, Deng Xin-Hua (邓新华)b, Liang Xiao-Jun (梁晓军)b, Zhou Nai-Gen (周耐根)a, Zhou Lang (周浪)a
a Institute of Photovoltaics, Nanchang University, Nanchang 330031, China;
b School of Science, Nanchang University, Nanchang 330031, China
Abstract  The near-infrared responsivity of a silicon photodetector employing the impurity photovoltaic (IPV) effect is investigated with a numerical method. The improvement of the responsivity can reach 0.358 A/W at a wavelength of about 1200 nm, and its corresponding quantum efficiency is 41.1%. The origin of the enhanced responsivity is attributed to the absorption of sub-bandgap photons, which results in the carrier transition from the impurity energy level to the conduction band. The results indicate that the IPV effect may provide a general approach to enhancing the responsivity of photodetectors.
Keywords:  impurity photovoltaic effect      responsivity      photodetector  
Received:  27 September 2014      Revised:  04 December 2014      Accepted manuscript online: 
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  88.30.gg (Design and simulation)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61464007, 61306084, and 51361022), the Postdoctoral Science Foundation of Jiangxi Province, China (Grant No. 2014KY32), and the Natural Science Foundation of Jiangxi Province, China (Grant No. 20122BAB202002).
Corresponding Authors:  Yuan Ji-Ren, Zhou Lang     E-mail:  yuanjiren@ncu.edu.cn;lzhou@ncu.edu.cn

Cite this article: 

Yuan Ji-Ren (袁吉仁), Huang Hai-Bin (黄海宾), Deng Xin-Hua (邓新华), Liang Xiao-Jun (梁晓军), Zhou Nai-Gen (周耐根), Zhou Lang (周浪) Enhanced near-infrared responsivity of silicon photodetector by the impurity photovoltaic effect 2015 Chin. Phys. B 24 048501

[1] Liu J S, Shan C S, Li B H, Zhang Z Z, Yang C L, Shen D Z and Fan X W 2010 Appl. Phys. Lett. 97 251102
[2] Wei C Y and Lin C H 2011 Jpn. J. Appl. Phys. 50 09MA04
[3] Yu J, Shan C X, Qiao Q, Xie X H, Wang S P, Zhang Z Z and Shen D Z 2012 Sensors 12 1280
[4] Liu S Q, Yang X H, Liu Y, Li B and Han Qin 2013 Chin. Phys. B 22 108503
[5] Li C, Xue C L, Liu Z, Cheng B W, Li C B and Wang Q M 2014 Chin. Phys. B 23 038506
[6] Keevers M J and Green M A 1994 J. Appl. Phys. 75 4022
[7] Beaucarne G, Brown A S, Keevers M J, Corkish R and Green M A 2002 Prog. Photovolt.: Res. Appl. 10 345
[8] Yuan J R, Shen H L, Zhong F L and Deng X H 2012 Phys Status Solidi A 209 1002
[9] Mohammed W F, Humoody M A and Al-Tikriti M N 2013 Renew. Sustain. Energy Rev. 26 408
[10] Burgelman M, Nollet P and Degrave S 2000 Thin Solid Films 361/362 527-532
[11] Burgelman M, Decock K, Khelifi S and Abass A 2013 Thin Solid Films 535 296
[12] Sze S M and Ng K K 2007 Physics of Semiconductor Devices (New York: Wiley)
[13] Yuan J R, Shen H L, Huang H B and Deng X H 2011 J. Appl. Phys. 110 104508
[14] Lucovsky G 1965 Solid State Commun. 3 299
[15] Khelifi S, Burgelman M, Verschraegen J and Belghachi A 2008 Sol. Energy Mater. Sol. Cells 92 1559
[1] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[2] A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer
Hsiang-Chun Wang(王祥骏), Yuheng Lin(林钰恒), Xiao Liu(刘潇), Xuanhua Deng(邓煊华),Jianwei Ben(贲建伟), Wenjie Yu(俞文杰), Deliang Zhu(朱德亮), and Xinke Liu(刘新科). Chin. Phys. B, 2023, 32(1): 018504.
[3] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[4] A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response
Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Mao-Lin Zhang(张茂林), Li-Li Yang(杨莉莉), Shan Li(李山), Zu-Yong Yan(晏祖勇), Shao-Hui Zhang(张少辉), Dao-You Guo(郭道友), Pei-Gang Li(李培刚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(8): 088503.
[5] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[6] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[7] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[8] Facile sensitizing of PbSe film for near-infrared photodetector by microwave plasma processing
Kangyi Zhao(赵康伊), Shuanglong Feng(冯双龙), Chan Yang(杨婵),Jun Shen(申钧), and Yongqi Fu(付永启). Chin. Phys. B, 2022, 31(3): 038504.
[9] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
[10] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[11] High-performance self-powered photodetector based on organic/inorganic hybrid van der Waals heterojunction of rubrene/silicon
Yancai Xu(徐彦彩), Rong Zhou(周荣), Qin Yin(尹钦), Jiao Li(李娇), Guoxiang Si(佀国翔), and Hongbin Zhang(张洪宾). Chin. Phys. B, 2021, 30(7): 077304.
[12] Deep-ultraviolet and visible dual-band photodetectors by integrating Chlorin e6 with Ga2O3
Yue Zhao(赵越), Jin-Hao Zang(臧金浩), Xun Yang(杨珣), Xue-Xia Chen(陈雪霞), Yan-Cheng Chen(陈彦成), Kai-Yong Li(李凯永), Lin Dong(董林), and Chong-Xin Shan(单崇新). Chin. Phys. B, 2021, 30(7): 078504.
[13] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[14] High-responsivity solar-blind photodetector based on MOCVD-grown Si-doped β-Ga2O3 thin film
Yu-Song Zhi(支钰崧), Wei-Yu Jiang(江为宇), Zeng Liu(刘增), Yuan-Yuan Liu(刘媛媛), Xu-Long Chu(褚旭龙), Jia-Hang Liu(刘佳航), Shan Li(李山), Zu-Yong Yan(晏祖勇), Yue-Hui Wang(王月晖), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2021, 30(5): 057301.
[15] High-performing silicon-based germanium Schottky photodetector with ITO transparent electrode
Zhiwei Huang(黄志伟), Shaoying Ke(柯少颖), Jinrong Zhou(周锦荣), Yimo Zhao(赵一默), Wei Huang(黄巍), Songyan Chen(陈松岩), and Cheng Li(李成). Chin. Phys. B, 2021, 30(3): 037303.
No Suggested Reading articles found!