Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 048502    DOI: 10.1088/1674-1056/24/4/048502
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Simulation and experimental study of high power microwave damage effect on AlGaAs/InGaAs pseudomorphic high electron mobility transistor

Yu Xin-Hai (于新海), Chai Chang-Chun (柴常春), Liu Yang (刘阳), Yang Yin-Tang (杨银堂), Xi Xiao-Wen (席晓文)
Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  The high power microwave (HPM) damage effect on the AlGaAs/InGaAs pseudomorphic high electron mobility transistor (pHEMT) is studied by simulation and experiments. Simulated results suggest that the HPM damage to pHEMT is due to device burn-out caused by the emerging current path and strong electric field beneath the gate. Besides, the results demonstrate that the damage power threshold decreases but the energy threshold slightly increases with the increase of pulse-width, indicating that HPM with longer pulse-width requires lower power density but more energy to cause the damage to pHEMT. The empirical formulas are proposed to describe the pulse-width dependence. Then the experimental data validate the pulse-width dependence and verify that the proposed formula P = 55τ-0.06 is capable of quickly and accurately estimating the HPM damage susceptibility of pHEMT. Finally the interior observation of damaged samples by scanning electron microscopy (SEM) illustrates that the failure mechanism of the HPM damage to pHEMT is indeed device burn-out and the location beneath the gate near the source side is most susceptible to burn-out, which is in accordance with the simulated results.
Keywords:  pHEMT      damage mechanism      high power microwave      pulse-width  
Received:  29 October 2014      Revised:  14 November 2014      Accepted manuscript online: 
PACS:  85.30.Tv (Field effect devices)  
  84.40.-x (Radiowave and microwave (including millimeter wave) technology)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2014CB339900) and the National Natural Science Foundation of China (Grant No. 60776034).
Corresponding Authors:  Yu Xin-Hai     E-mail:  xhyu@stu.xidian.edu.cn

Cite this article: 

Yu Xin-Hai (于新海), Chai Chang-Chun (柴常春), Liu Yang (刘阳), Yang Yin-Tang (杨银堂), Xi Xiao-Wen (席晓文) Simulation and experimental study of high power microwave damage effect on AlGaAs/InGaAs pseudomorphic high electron mobility transistor 2015 Chin. Phys. B 24 048502

[1] Mahon S J, Dadello A, Fattorini A P, Fattorini A P, Bessemoulin A and Harvey J T 2008 IEEE Microw. Symp. Dig., 2008 MTT-S International, 15-20 June, 2008, Atlanta, GA, p. 855
[2] Alvaro M, Caddemi A, Crupi G and Donato N 2005 Microelectron. J. 36 732
[3] Baksht T, Solodky S, Leibovitch M, Bunin G and Shapira Y 2003 IEEE Trans. Electron Dev. 50 479
[4] Tan C L, Wang H and Radhakrishnan K 2007 IEEE Trans. Dev. Mater. Reliab. 7 488
[5] Chou Y C, Lai R, Block T R, Sharma A, Kan Q, Leung D L, Eng D and Oki A 2005 IEEE Trans. Microw. Theory Tech. 53 3398
[6] Bäckström M G and Lövstrand K G 2004 IEEE Trans. EMC 46 396
[7] Ren X R, Chai C C, Ma Z Y and Yang Y T 2013 J. Xidian University 40 36 (in Chinese)
[8] Ren X R, Chai C C, Ma Z Y, Yang Y T, Qiao L P, Shi C L and Ren L H 2013 J. Semicond. 34 044004
[9] Ma Z Y, Chai C C, Ren X R, Yang Y T and Chen B 2012 Acta Phys. Sin. 61 078501 (in Chinese)
[10] Ma Z Y, Chai C C, Ren X R, Yang Y T, Chen B and Zhao Y B 2012 Chin. Phys. B 21 058502
[11] Ma Z Y, Chai C C, Ren X R, Yang Y T, Chen B, Song K and Zhao Y B 2012 Chin. Phys. B 21 098502
[12] Ma Z Y, Chai C C, Ren X R, Yang Y T, Zhao Y B and Qiao L P 2013 Chin. Phys. B 22 028502
[13] Yu X H, Chai C C, Ren X R, Yang Y T, Xi X W and Liu Y 2014 J. Semicond. 35 084011
[14] Integrated Systems Engineering Corp 2004 ISE-TCAD Dessis Simulation User's Manual, Zurich, Switzerland, pp. 15, 195
[15] Kim K and Iliadis A A 2010 Solid-State Electron. 54 18
[16] Chai C C, Ma Z Y, Ren X R, Yang Y T, Zhao Y B and Yu X H 2013 Chin. Phys. B 22 068502
[17] Wunsch D C and Bell R R 1968 IEEE Trans. Nucl. Sci. 15 244
[18] Tasca D M 1970 IEEE Trans. Nucl. Sci. 17 364
[19] Brown W D 1972 IEEE Trans. Nucl. Sci. 19 68
[20] Chai C C, Yang Y T, Zhang B, Leng P, Yang Y and Rao W 2009 Semicond. Sci. Technol. 24 035003
[1] C band microwave damage characteristics of pseudomorphic high electron mobility transistor
Qi-Wei Li(李奇威), Jing Sun(孙静), Fu-Xing Li(李福星), Chang-Chun Chai(柴常春), Jun Ding(丁君), and Jin-Yong Fang(方进勇). Chin. Phys. B, 2021, 30(9): 098502.
[2] A compact dual-band radiation system
Yuan-Qiang Yu(于元强), Yu-Wei Fan(樊玉伟), and Xiao-Yu Wang(王晓玉)$. Chin. Phys. B, 2020, 29(11): 118402.
[3] Modes decomposition in particle-in-cell software CEMPIC
Aiping Fang(方爱平)†, Shanshan Liang(梁闪闪), Yongdong Li(李永东), Hongguang Wang(王洪广), and Yue Wang(王玥). Chin. Phys. B, 2020, 29(10): 100205.
[4] Transmission properties of microwave in rectangular waveguide through argon plasma
Xiaoyu Han(韩晓宇), Dawei Li(李大伟), Meie Chen(陈美娥), Zhan Zhang(张展), Zheng Li(李铮), Yujian Li(李雨键), Junhong Wang(王均宏). Chin. Phys. B, 2019, 28(3): 035204.
[5] Damage effects and mechanism of the silicon NPN monolithic composite transistor induced by high-power microwaves
Hui Li(李慧), Chang-Chun Chai(柴常春), Yu-Qian Liu(刘彧千), Han Wu(吴涵), Yin-Tang Yang(杨银堂). Chin. Phys. B, 2018, 27(8): 088502.
[6] A low-outgassing-rate carbon fiber array cathode
An-Kun Li(李安昆), Yu-Wei Fan(樊玉伟), Bao-Liang Qian(钱宝良), Zi-Cheng Zhang(张自成), Tao Xun(荀涛). Chin. Phys. B, 2018, 27(2): 028401.
[7] Air breakdown induced by the microwave with two mutually orthogonal and heterophase electric field components
Pengcheng Zhao(赵朋程), Lixin Guo(郭立新). Chin. Phys. B, 2017, 26(9): 099201.
[8] Analysis of the damage threshold of the GaAs pseudomorphic high electron mobility transistor induced by the electromagnetic pulse
Xiao-Wen Xi(席晓文), Chang-Chun Chai(柴常春), Yang Liu(刘阳), Yin-Tang Yang(杨银堂), Qing-Yang Fan(樊庆扬), Chun-Lei Shi(史春蕾). Chin. Phys. B, 2016, 25(8): 088504.
[9] Heterogeneous integration of GaAs pHEMT and Si CMOS on the same chip
Li-Shu Wu(吴立枢), Yan Zhao(赵岩), Hong-Chang Shen(沈宏昌) You-Tao Zhang(张有涛), Tang-Sheng Chen(陈堂胜). Chin. Phys. B, 2016, 25(6): 067306.
[10] Damage effect and mechanism of the GaAs pseudomorphic high electron mobility transistor induced by the electromagnetic pulse
Xiao-Wen Xi(席晓文), Chang-Chun Chai(柴常春), Gang Zhao(赵刚), Yin-Tang Yang(杨银堂), Xin-Hai Yu(于新海), Yang Liu(刘阳). Chin. Phys. B, 2016, 25(4): 048503.
[11] Damage effect and mechanism of the GaAs high electron mobility transistor induced by high power microwave
Yang Liu(刘阳), Chang-Chun Chai(柴常春), Yin-Tang Yang(杨银堂), Jing Sun(孙静), Zhi-Peng Li(李志鹏). Chin. Phys. B, 2016, 25(4): 048504.
[12] Electron irradiation-induced change of structure and damage mechanisms in multi-walled carbon nanotubes
Yang Jian-Qun (杨剑群), Li Xing-Ji (李兴冀), Liu Chao-Ming (刘超铭), Ma Guo-Liang (马国亮), Gao Feng (高峰). Chin. Phys. B, 2015, 24(11): 116103.
[13] Radio-frequency compressed electron pulse-width characterization by cross-correlation between electron bunches and laser-induced plasma
Li Jing (李静), Pei Min-Jie (裴敏洁), Qi Da-Long (齐大龙), Qi Ying-Peng (齐迎朋), Yang Yan (杨岩), Sun Zhen-Rong (孙真荣). Chin. Phys. B, 2014, 23(12): 124209.
[14] Hardening measures for bipolar transistor against microwave-induced damage
Chai Chang-Chun (柴常春), Ma Zhen-Yang (马振洋), Ren Xing-Rong (任兴荣), Yang Yin-Tang (杨银堂), Zhao Ying-Bo (赵颖博), Yu Xin Hai (于新海). Chin. Phys. B, 2013, 22(6): 068502.
[15] Pulsed microwave damage trend of bipolar transistor as a function of pulse parameters
Ma Zhen-Yang (马振洋), Chai Chang-Chun (柴常春), Ren Xing-Rong (任兴荣), Yang Yin-Tang (杨银堂), Zhao Ying-Bo (赵颖博), Qiao Li-Ping (乔丽萍 ). Chin. Phys. B, 2013, 22(2): 028502.
No Suggested Reading articles found!