Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 127301    DOI: 10.1088/1674-1056/23/12/127301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles study of the formation and electronic structure of a conductive filament in ZnO-based resistive random access memory

Zhao Jing (赵晶)a b, Dong Jing-Yu (董静雨)a, Ren Shu-Xia (任书霞)a c, Zhang Li-Yong (张礼勇)a, Zhao Xu (赵旭)a, Chen Wei (陈伟)a
a Key Laboratory of Advanced Films of Hebei Province, College of Physics Science & Information Engineering, Hebei Normal University, Shijiazhuang 050024, China;
b Department of Physics and Electrical Engineering, Handan College, Handan 056005, China;
c School of Material Science and Engineering, Shijiazhuang TieDao University, Shijiazhuang 050043, China
Abstract  Oxygen vacancy plays a crucial role in resistive switching. To date, a quantitative study about the distribution of the oxygen vacancies and its effect on the resistive switching has not yet been reported. In this study, we report our first-principles calculations in ZnO-based resistive switching memory grown on a Pt substrate. We show that the oxygen vacancies prefer to be located in the ZnO (0001) plane, i.e. in the direction parallel to the film surface in the preparation process. These oxygen vacancies drift easily in the film when a voltage is applied in the SET process and prefer to form a line defect perpendicular to the film surface. An isolated oxygen vacancy makes little contribution to the conductivity of ZnO, whereas the ordering of oxygen vacancies in the direction perpendicular to the film surface leads to a dramatic enhancement of the conductivity and thus forms conductive filaments. The semiconducting characteristics of the conductive filaments are confirmed experimentally.
Keywords:  first-principles calculations      resistive switching      conductive filament      oxygen-vacancy ordering  
Received:  30 July 2014      Revised:  30 August 2014      Accepted manuscript online: 
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.61.-r (Electrical properties of specific thin films)  
  71.55.-i (Impurity and defect levels)  
Fund: Project supported by the Natural Science Foundation of Hebei Province, China (Grant Nos. A2013205149 and E2013210133) and the Hebei Provincial Education Department, China (Grant Nos. ZH2012067 and 2011170).
Corresponding Authors:  Chen Wei     E-mail:  chen07308@mail.hebtu.edu.cn

Cite this article: 

Zhao Jing (赵晶), Dong Jing-Yu (董静雨), Ren Shu-Xia (任书霞), Zhang Li-Yong (张礼勇), Zhao Xu (赵旭), Chen Wei (陈伟) First-principles study of the formation and electronic structure of a conductive filament in ZnO-based resistive random access memory 2014 Chin. Phys. B 23 127301

[1]Sawa A 2008 Mater. Today 11 28
[2]Hong D S, Chen Y S, Li Y, Yang H W, Wei L L, Shen B G and Sun J R 2014 Sci. Rep. 4 04058
[3]Ren S X, Sun G W, Zhao J, Dong J Y, Wei Y, Ma Z C, Zhao X and Chen W 2014 Appl. Phys. Lett. 104 232406
[4]Zhao J W, Liu F J, Huang H Q, Hu Z F and Zhang X Q 2012 Chin. Phys. B 21 065201
[5]Chen A, Haddad S, Wu Y C, Lan Z, Fang T N and Kaza S 2007 Appl. Phys. Lett. 91 123517
[6]Kim D C, Seo S, Ahn S E, Suh D S, Lee M J, Park B H, Yoo I K, Baek I G, Kim H J, Yim E K, Lee J E, Park S O, Kim H S, Chung U I, Moon J T and Ryu B I 2006 Appl. Phys. Lett. 88 202102
[7]Fujii T, Kawasaki M, Sawa A, Akoh H, Kawazoe Y and Tokura Y 2005 Appl. Phys. Lett. 86 012107
[8]Guo X, Schindler C, Menzel S and Waser R 2007 Appl. Phys. Lett. 91 133513
[9]Waser R, Dittmann R, Staikov G and Szot K 2009 Adv. Mater. 21 2632
[10]Xu N, Liu L, Sun X, Liu X, Han D, Wang Y, Han R, Kang J and Yu B 2008 Appl. Phys. Lett. 92 232112
[11]Zhang H, Wu D, Tang Q, Liu L and Zhou Z 2013 J. Mater. Chem. A 1 2231
[12]Xu P, Tang Q and Zhou Z 2013 Nanotechnology 24 305401
[13]Segall M D, Philip J D L, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[14]Vanderbilt D 1990 Phys. Rev. B 41 7892
[15]Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[16]Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[17]Anisimov V I, Zaanen J and Andersen O K 1991 Phys. Rev. B 44 943
[18]Sheetz R M, Ponomareva I, Richter E, Andriotis A N and Menon M 2009 Phys. Rev. B 80 195314
[19]Park S, Ahn H S, Lee C K, Kim H, Jin H, Lee H S, Seo S, Yu J and Han S 2008 Phys. Rev. B 77 134103
[20]Wang Q, Sun Q, Jena P and Kawazoe Y 2009 Phys. Rev. B 79 115407
[21]Jeong H Y, Lee J Y and Choi S Y 2010 Appl. Phys. Lett. 97 042109
[22]Jia C L, Lentzen M and Urban K 2003 Science 299 870
[23]Reynolds D C, Look D C, Jogai B, Litton C W, Cantwell G and Harsch W C 1999 Phys. Rev. B 60 2340
[24]Oba F, Togo A, Tanaka I, Paier J and Kresse G 2008 Phys. Rev. B 77 245202
[25]De Stefano F, Houssa M, Kittl J A, Jurczak M, Afanasév V V and Stesmans A 2012 Appl. Phys. Lett. 100 142102
[26]Chen G, Song C, Chen C, Gao S, Zeng F and Pan F 2012 Adv. Mater. 24 3515
[1] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[2] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[3] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[4] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[5] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[6] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[7] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[8] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[9] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[10] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[11] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[12] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[13] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[14] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[15] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
No Suggested Reading articles found!