Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 127302    DOI: 10.1088/1674-1056/23/12/127302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Annealing temperature influence on the degree of inhomogeneity of the Schottky barrier in Ti/4H–SiC contacts

Han Lin-Chao (韩林超)a, Shen Hua-Jun (申华军)a, Liu Ke-An (刘可安)b, Wang Yi-Yu (王弋宇)a, Tang Yi-Dan (汤益丹)a, Bai Yun (白云)a, Xu Heng-Yu (许恒宇)a, Wu Yu-Dong (吴煜东)b, Liu Xin-Yu (刘新宇)a
a Microwave Device and IC Department, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
b Zhuzhou CSR Times Electric Co., Ltd, Zhuzhou 412001, China
Abstract  Tung's model was used to analyze anomalies observed in Ti/SiC Schottky contacts. The degree of the inhomogeneous Schottky barrier after annealing at different temperatures is characterized by the 'T0 anomaly' and the difference (ΔФ) between the uniformly high barrier height (ФB0) and the effective barrier height (ФBeff). Those two parameters of Ti Schottky contacts on 4H–SiC were deduced from I–V measurements in the temperature range of 298 K–503 K. The increase in Schottky barrier (SB) height (ФB) and decrease in the ideality factor (n) with an increase measurement temperature indicate the presence of an inhomogeneous SB. The degree of inhomogeneity of the Schottky barrier depends on the annealing temperature, and it is at its lowest for 500-℃ thermal treatment. The degree of inhomogeneity of the SB could reveal effects of thermal treatments on Schottky contacts in other aspects.
Keywords:  Schottky contact      SiC      inhomogeneity barrier  
Received:  02 April 2014      Revised:  09 July 2014      Accepted manuscript online: 
PACS:  73.40.Ns (Metal-nonmetal contacts)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61106080 and 61275042) and the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2013ZX02305).
Corresponding Authors:  Shen Hua-Jun     E-mail:  shenhuajun@ime.ac.cn

Cite this article: 

Han Lin-Chao (韩林超), Shen Hua-Jun (申华军), Liu Ke-An (刘可安), Wang Yi-Yu (王弋宇), Tang Yi-Dan (汤益丹), Bai Yun (白云), Xu Heng-Yu (许恒宇), Wu Yu-Dong (吴煜东), Liu Xin-Yu (刘新宇) Annealing temperature influence on the degree of inhomogeneity of the Schottky barrier in Ti/4H–SiC contacts 2014 Chin. Phys. B 23 127302

[1]Roccaforte F, Giannazzo F and Raineri V 2010 J. Phys. D: Appl. Phys. 43 223001
[2]Hallin C, Yakimova R, Pécz B, Georgieva A, Marinova Ts, Kasamakova L, Kakanakov R and Janzén E 1997 J. Electron. Mater. 26 119
[3]Marinova Ts, Kakanakova-Georgieva A, Krastev V, Kakanakov R, Neshev M, Kassamakova L, Noblanc O, Arnodo C, Cassette S, Brylinski C, Pecz B, Radnoczi G and Bincze Gy 1997 Mater. Sci. Eng. B 46 223
[4]Guo H, Zhang Y M, Qiao D Y, Sun L and Zhang Y M 2007 Chin. Phys. 16 1753
[5]Barda B, Macháč P and Hubičková 2008 Microelectron. Eng. 85 2022
[6]Gupta S K, Azam A and Akhtar J 2011 Physica B 406 3030
[7]Lee S K, Zetterling C M and Ostling M 2000 J. Appl. Phys. 87 8039
[8]Shalish I, Oliveira C E M D, Shapira Y, Burstein L and Eizenberg M 2000 J. Appl. Phys. 88 5724
[9]Cole M W, Joshi P C, Hubbard C W, Wood M C, Ervin M H, Geil B and Ren F 2000 J. Appl. Phys. 88 2652
[10]Roccaforte F, Via F L, Franco S D and Raineri V 2003 Microelectron. Eng. 70 524
[11]Defives D, Noblanc O, Dua C, Brylinski C, Barthula M, Aubry-Fortuna V and Meyer F 1999 IEEE Trans. Electron. Dev. 46 449
[12]Roccaforte F, Via F L and Raineri V 2003 Appl. Phys. A 77 543
[13]Hamida A F, Ouennoughi Z, Sellai A, Weiss R and Ryssel H 2008 Semicond. Sci. Technol. 23 045005
[14]Pérez R, Mestres N, Montserrat J, Tournier D and Godignon P 2005 Phys. Status Solidi A 202 692
[15]Tung R T 1992 Phys. Rev. B 45 13509
[16]Im H J, Ding Y, Pelz P and Choyke W J 2001 Phys. Rev. B 64 075310
[17]Benmaza H, Akkal B, Abid H, Bluet J M, Anani M and Bensaad Z 2008 Microelectron. J. 39 80
[18]Dae H K, Jong H L, Jeong H M, Myong S O, Ho K S, Jeong H Y, Jae B L and Hyeong J K 2007 Solid State Phenomena 124-126 105
[19]Rhoderick E H and Williams R H 1998 Metal-Semiconductor Contact 2nd edn. (Oxford: Clarendon), ISBN-13: 978-0198593355
[20]Itoh A, Kimoto T and Matsunami H 1995 IEEE Electron. Dev. Lett. 16 280
[21]Calcagno L, Ruggiero A, Roccaforte F and La Via F 2005 J. Appl. Phys. 98 023713
[22]Wang Y H, Zhang Y M, Zhang Y M, Song Q W and Jia R X 2011 Chin. Phys. B 20 087305
[23]Schmitsdirf R F, Kampen T U and Mönch W 1997 J. Vac. Sci. Technol. B 15 1221
[24]Song Q W, Zhang Y M, Zhang Y M, Chen F P and Tang X Y 2011 Chin. Phys. B 20 057301
[25]Levit M, Grimberg I and Weiss B Z 1996 J. Appl. Phys. 80 167
[26]Akinmasa K, Takashi N, Takasumi O, Tsutomu Y, Kenji F, Hajime O and Kazuo A 2009 Mater. Sci. Forum 600-603 643
[27]Defives D, Durand Q, Wyczisk F, Olivier J, Noblanc O and Brylinski 2000 Mater. Sci. Forum 338-342 411
[28]Goesmann F and Schmid-Fetzer R 1995 Semicond. Sci. Technol. 10 461
[1] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[2] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[3] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[4] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[5] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[8] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[9] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[10] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[11] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[12] Definition and expression of non-symmetric physical properties in space for uniaxial crystals
Xiaojie Guo(郭晓杰), Lijuan Chen(陈丽娟), Zeliang Gao(高泽亮), Xin Yin(尹鑫), and Xutang Tao(陶绪堂). Chin. Phys. B, 2022, 31(9): 096103.
[13] Substitutions of vertex configuration of Ammann-Beenker tiling in framework of Ammann lines
Jia-Rong Ye(叶家容), Wei-Shen Huang(黄伟深), and Xiu-Jun Fu(傅秀军). Chin. Phys. B, 2022, 31(8): 086101.
[14] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[15] Real non-Hermitian energy spectra without any symmetry
Boxue Zhang(张博学), Qingya Li(李青铔), Xiao Zhang(张笑), and Ching Hua Lee(李庆华). Chin. Phys. B, 2022, 31(7): 070308.
No Suggested Reading articles found!