Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 127303    DOI: 10.1088/1674-1056/23/12/127303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A novel LDMOS with a junction field plate and a partial N-buried layer

Shi Xian-Long (石先龙)a, Luo Xiao-Rong (罗小蓉)a b, Wei Jie (魏杰)a, Tan Qiao (谭桥)a, Liu Jian-Ping (刘建平)a, Xu Qing (徐青)a, Li Peng-Cheng (李鹏程)a, Tian Rui-Chao (田瑞超)a, Ma Da (马达)a
a State Key Laboratory of Electronic Thin Films and Integrated Devices. University of Electronic Science and Technology of China, Chengdu 610054, China;
b Science and Technology on Analog Integrated Circuit Laboratory, Chongqing 400060, China
Abstract  

A novel lateral double-diffused metal–oxide semiconductor (LDMOS) with a high breakdown voltage (BV) and low specific on-resistance (Ron.sp) is proposed and investigated by simulation. It features a junction field plate (JFP) over the drift region and a partial N-buried layer (PNB) in the P-substrate. The JFP not only smoothes the surface electric field (E-field), but also brings in charge compensation between the JFP and the N-drift region, which increases the doping concentration of the N-drift region. The PNB reshapes the equipotential contours, and thus reduces the E-field peak on the drain side and increases that on the source side. Moreover, the PNB extends the depletion width in the substrate by introducing an additional vertical diode, resulting in a significant improvement on the vertical BV. Compared with the conventional LDMOS with the same dimensional parameters, the novel LDMOS has an increase in BV value by 67.4%, and a reduction in Ron.sp by 45.7% simultaneously.

Keywords:  junction field plate      partial N-buried layer      specific on-resistance      breakdown voltage  
Received:  30 June 2014      Revised:  07 August 2014      Accepted manuscript online: 
PACS:  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Tv (Field effect devices)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61376079), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-11-0062), and the Postdoctoral Science Foundation of China (Grant Nos. 2012T50771 and XM2012004).

Corresponding Authors:  Luo Xiao-Rong     E-mail:  xrluo@uestc.edu.cn

Cite this article: 

Shi Xian-Long (石先龙), Luo Xiao-Rong (罗小蓉), Wei Jie (魏杰), Tan Qiao (谭桥), Liu Jian-Ping (刘建平), Xu Qing (徐青), Li Peng-Cheng (李鹏程), Tian Rui-Chao (田瑞超), Ma Da (马达) A novel LDMOS with a junction field plate and a partial N-buried layer 2014 Chin. Phys. B 23 127303

[1]Ludikhuize A W 2001 IEEE Solid-State Device Research Conference, September 11-13, 2001, Proceeding of the 31st European, p. 35
[2]Iqbal M M, Udrea F and Napoli E 2009 IEEE Proceedings of the 21st International Symposium on Power Semiconductor Devices and ICs, June 14-18, 2009, Barcelona, Spain, p. 247
[3]Lee M R and Kwon O K 1999 IEEE Proceedings of the 11th International Symposium on Power Semiconductor Devices and ICs, May 26-28, 1999, Toronto, Canada, p. 249
[4]Xie G, Xu E, Hashemi N, Zhang B, Fu F Y and Wai T N 2012 Chin. Phys. B 21 086105
[5]Yahata A and Atsuta M 1995 IEEE Proceedings of the 7th International Symposium on Power Semiconductor Devices and ICs, May 23-25, 1995, Yokohama, Japan, p. 400
[6]Ludikhuize A W 2000 IEEE Proceedings of the 12th International Symposium on Power Semiconductor Devices and ICs, May 22-25, 2000, Toulouse, France, p. 11
[7]Luo X R, Yao G L, Zhang Z Y, Jiang Y H, Zhou K, Wang P, Wang Y G, Lei T F, Zhang Y X and Wei J 2012 Chin. Phys. B 21 068501
[8]Luo X R, Luo Y C, Fan Y, Hu G Y, Wang X W, Zhang Z Y, Fan Y H, Cai J Y, Wang P and Zhou K 2013 Chin. Phys. B 22 027304
[9]Luo, X, Zhang B and Li Z 2007 Solid-State Electronics 51 493
[10]Duan B X, Zhang B and Li Z J 2006 IEEE International Conference on Communications, Circuits and Systems Proceedings, June 25-28, 2006, Guilin, China, Vol. 4, p. 2709
[11]Zhang B, Duan B X and Li Z J 2006 J. Semicond. 27 4
[12]Cheng J B, Zhang B and Li Z J 2008 IEEE Electron Dev. Lett. 29 645
[13]Leung Y K, Paul A K, Goodson K E, Plummer J D and Wong S 1997 IEEE Electron Dev. Lett. 18 414
[14]Zhang S D, Sin K O, Lai T M L and Ko P K 1999 IEEE Trans. Electron Dev. 46 1036
[15]Jiang H, Zhang B, Chen W, Li Z, Zheng C, Liu C, Rao Z and Dong B 2012 IEEE Proceedings of the 24th International Symposium on Power Semiconductor Devices and ICs, June 3-7, 2012, Bruges, Belgium, p. 173
[1] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[2] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[3] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[4] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[5] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[6] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[7] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[8] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[9] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[10] Novel Si/SiC heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit
Baoxing Duan(段宝兴), Xin Huang(黄鑫), Haitao Song (宋海涛), Yandong Wang(王彦东), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(4): 048503.
[11] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
[12] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
[13] Variable-K double trenches SOI LDMOS with high-concentration P-pillar
Lijuan Wu(吴丽娟), Lin Zhu(朱琳), Xing Chen(陈星). Chin. Phys. B, 2020, 29(5): 057701.
[14] Numerical and analytical investigations for the SOI LDMOS with alternated high-k dielectric and step doped silicon pillars
Jia-Fei Yao(姚佳飞), Yu-Feng Guo(郭宇锋), Zhen-Yu Zhang(张振宇), Ke-Meng Yang(杨可萌), Mao-Lin Zhang(张茂林), Tian Xia(夏天). Chin. Phys. B, 2020, 29(3): 038503.
[15] Breakdown voltage enhancement in GaN channel and AlGaN channel HEMTs using large gate metal height
Zhong-Xu Wang(王中旭), Lin Du(杜林), Jun-Wei Liu(刘俊伟), Ying Wang(王颖), Yun Jiang(江芸), Si-Wei Ji(季思蔚), Shi-Wei Dong(董士伟), Wei-Wei Chen(陈伟伟), Xiao-Hong Tan(谭骁洪), Jin-Long Li(李金龙), Xiao-Jun Li(李小军), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(2): 027301.
No Suggested Reading articles found!