Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 123101    DOI: 10.1088/1674-1056/23/12/123101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Electronic structure and magnetic properties of (Mn, N)-codoped ZnO

Wang Qian-Jin (王前进)a, Wang Jin-Bin (王金斌)b, Zhong Xiang-Li (钟向丽)b, Tan Qiu-Hong (谭秋红)a, Liu Ying-Kai (刘应开)a
a College of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China;
b Faculty of Materials, Optoelectronics and Physics, Xiangtan University, Xiangtan 411105, China
Abstract  The electronic structures and magnetic properties of (Mn, N)-codoped ZnO are investigated by using the first-principles calculations. In the ferromagnetic state, as N substitutes for the intermediate O atom of the nearest neighboring Mn ions, about 0.5 electron per Mn2+ ion transfers to the N2- ion, which leads to the high-state Mn ions (close to +2.5) and trivalent N3- ions. In an antiferromagnetic state, one electron transfers to the N2- ion from the downspin Mn2+ ion, while no electron transfer occurs for the upspin Mn2+ ion. The (Mn, N)-codoped ZnO system shows ferromagnetism, which is attributed to the hybridization between Mn 3d and N 2p orbitals.
Keywords:  first-principles calculations      ferromagnetism      hybridization  
Received:  17 April 2014      Revised:  10 July 2014      Accepted manuscript online: 
PACS:  31.15.E (Density-functional theory)  
  71.55.Gs (II-VI semiconductors)  
  75.30.Hx (Magnetic impurity interactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304273, 10764005, 11164034, 11072208, and 11032010), the Yunnan Provincial Natural Science Foundation, China (Grant No. 2010DC053), and the Scientific Research Foundation for Ph. D. Student of Yunnan Normal University.
Corresponding Authors:  Wang Jin-Bin     E-mail:  jbwang@xtu.edu.cn

Cite this article: 

Wang Qian-Jin (王前进), Wang Jin-Bin (王金斌), Zhong Xiang-Li (钟向丽), Tan Qiu-Hong (谭秋红), Liu Ying-Kai (刘应开) Electronic structure and magnetic properties of (Mn, N)-codoped ZnO 2014 Chin. Phys. B 23 123101

[1]Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019
[2]Kittilstved K R, Norberg N S and Gamelin D R 2005 Phys. Rev. Lett. 94 147209
[3]Xu H Y, Liu Y C, Xu C S, Liu Y X, Shao C L and Mu R 2006 Appl. Phys. Lett. 88 242502
[4]Yan W S, Sun Z H, Liu Q H, Li Z R, Shi T S, Wang F, Qi Z M, Zhang G B and Wei S Q 2007 Appl. Phys. Lett. 90 242509
[5]Gu Z B, Lu M H, Wang J, Wu D, Zhang S T, Meng X K, Zhu Y Y, Zhu S N and Chen Y F 2006 Appl. Phys. Lett. 88 082111
[6]Ruan H B, Fang L, Li W J, Qin G P, Wu F and Kong C Y 2014 Mater. Sci. Semicond. Process. 21 52
[7]Wu K P, Gu S L, Tang K, Ye J D, Zhu S M, Zhou M R, Huang Y R, Xu M X, Zhang R and Zheng Y D 2012 J. Magn. Magn. Mater. 324 1649
[8]Wang D D, Xing G Z, Yan F, Yan Y S and Li S 2014 Appl. Phys. Lett. 104 022412
[9]Wu K P, Gu S L, Zhu S M, Huang Y R and Zhou M R 2012 Acta Phys. Sin. 61 057503 (in Chinese)
[10]Yang T Y, Kong C Y, Ruan H B, Qin G P, Li W J, Liang W W, Meng X D, Zhao Y H, Fang L and Cui Y T 2012 Acta Phys. Sin. 61 168101 (in Chinese)
[11]Assadi M H N, Zhang Y B and Li S 2009 J. Phys.: Condens. Matter 21 185503
[12]Wang Q, Sun Q and Jena P 2004 Phys. Rev. B 70 052408
[13]Zhao L, Lu P F, Yu Z Y, Guo X T, Shen Y, Ye H, Yuan G F and Zhang L 2010 J. Appl. Phys. 108 113924
[14]Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, Fabris S, Fratesi G, de Gironcoli S, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502
[15]Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[16]Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[17]Pack J D and Monkhorst H J 1977 Phys. Rev. B 16 1748
[18]Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616
[19]Hu S J, Yan S S, Zhao M W and Mei L M 2006 Phys. Rev. B 73 245205
[20]Shen L, Wu R Q, Pan H, Peng G W, Yang M, Sha Z D and Feng Y P 2008 Phys. Rev. B 78 073306
[21]Ye X J, Song H A, Zhong W, Xu M H, Qi X S, Jing C Q, Yang Z X, Au C T and Du Y W 2008 J. Phys. D: Appl. Phys. 41 155005
[22]Peng X Y and Ahuja R 2009 Appl. Phys. Lett. 94 102504
[23]Yang K S, Wu R Q, Shen L, Feng Y P, Dai Y and Huang B B 2010 Phys. Rev. B 81 125211
[24]Kudrnovský J, Turek I, Drchal V, Máca F, Weinberger P and Bruno P 2004 Phys. Rev. B 69 115208
[25]Mahmoud A B, von Bardeleben H J, Cantin J L, Mauger A, Chikoidze E and Dumont Y 2006 Phys. Rev. B 74 115203
[26]Droubay T C, Keavney D J, Kaspar T C, Heald S M, Wang C M, Johnson C A, Whitaker K M, Gamelin D R and Chambers S A 2009 Phys. Rev. B 79 155203
[27]Gopal P and Spaldin N A 2006 Phys. Rev. B 74 094418
[28]Cococcocioni M and de Gironcoli S 2005 Phys. Rev. B 71 035105
[1] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[2] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[3] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[9] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[10] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[11] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[12] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[13] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[14] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[15] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
No Suggested Reading articles found!