Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 120601    DOI: 10.1088/1674-1056/23/12/120601
GENERAL Prev   Next  

Research and application of regular phenomenon between periodic signals

Ye Yun-Xia (叶云霞), Xuan Zong-Qiang (宣宗强), Gu Jun-Shan (谷军闪), Xuan Yong (宣勇)
Department of Measurement and Instrumentation, Xidian University, Xi'an 710071, China
Abstract  The phase change between periodic signals is regular. Research on the regular phenomenon between periodic signals is helpful to improve the precision of some measurements and develop some new measurement methods. So it is necessary to analyze the characteristics of the greatest common factor frequency and the least common multiple period universally existing in periodic signals. The regulation of the quantitative phase shift resolution between periodic signals is presented. The cause of difference in phase characteristics between periodic signals is explained well. In this paper we propose different application prospects based on the regular phenomenon between periodic signals, with focusing on the methods for high precision frequency measurement and transient stability measurement. The experimental results are satisfactory.
Keywords:  periodic signal      phase coincidence      frequency      transient stability  
Received:  06 May 2014      Revised:  23 June 2014      Accepted manuscript online: 
PACS:  06.30.Ft (Time and frequency)  
  06.20.Dk (Measurement and error theory)  
  07.05.Fb (Design of experiments)  
  07.50.Qx (Signal processing electronics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10978017 and 61201288).
Corresponding Authors:  Ye Yun-Xia     E-mail:  604yyx@163.com

Cite this article: 

Ye Yun-Xia (叶云霞), Xuan Zong-Qiang (宣宗强), Gu Jun-Shan (谷军闪), Xuan Yong (宣勇) Research and application of regular phenomenon between periodic signals 2014 Chin. Phys. B 23 120601

[1]Shi Y B, Guo J and Cui N 2012 Phys. Procedia 25 1342
[2]Diddams S A, Bergquist J C, Jefferts S R and Oates C W 2004 Science 306 1318
[3]Yu J G, Zhou W, Du B Q, Dong S F and Fan Q Y 2012 Chin. Phys. Lett. 29 070601
[4]Du B Q, Zhou W, Chen F X and Zhou H N 2009 Chin. J. Sci. Instrum. 30 967
[5]Zhou W, Zhou H and Fan W J 2008 Proceedings of the IEEE International Frequency Control Symposium, May 19-21, Honolulu, United States of America, p. 468
[6]Li Z Q, Zhou W, Chen F X and Liu C G 2010 Chin. Phys. B 19 090601
[7]Dawkins S T, McFerran J J and Luiten N 2007 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 918
[8]Uchino M and Mochizuki K 2004 Electron. Commun. Jpn. 87 21
[9]Ye L L, Shi M H, Shen X Q and Yang L 2011 China Sci. Technol. Inform. 12 150
[1] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[2] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[3] Transition frequencies between 2S and 2P states of lithium-like ions
Liming Wang(王黎明), Tongtong Liu(刘仝彤), Weiqing Yang(杨为青), and Zong-Chao Yan. Chin. Phys. B, 2023, 32(3): 033102.
[4] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[5] Ghost imaging based on the control of light source bandwidth
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉). Chin. Phys. B, 2023, 32(3): 034210.
[6] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[7] Ignition dynamics of radio frequency discharge in atmospheric pressure cascade glow discharge
Ya-Rong Zhang(张亚容), Qian-Han Han(韩乾翰), Jun-Lin Fang(方骏林), Ying Guo(郭颖), and Jian-Jun Shi(石建军). Chin. Phys. B, 2023, 32(2): 025201.
[8] Enhancement of electron-positron pairs in combined potential wells with linear chirp frequency
Li Wang(王莉), Lie-Juan Li(李烈娟), Melike Mohamedsedik(麦丽开·麦提斯迪克), Rong An(安荣), Jing-Jing Li(李静静), Bo-Song Xie(谢柏松), and Feng-Shou Zhang(张丰收). Chin. Phys. B, 2023, 32(1): 010301.
[9] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[10] New designed helical resonator to improve measurement accuracy of magic radio frequency
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红). Chin. Phys. B, 2022, 31(9): 093201.
[11] Numerical study of converting beat-note signals of dual-frequency lasers to optical frequency combs by optical injection locking of semiconductor lasers
Chenhao Liu(刘晨浩), Haoshu Jin(靳昊澍), Hui Liu(刘辉), and Jintao Bai(白晋涛). Chin. Phys. B, 2022, 31(8): 084205.
[12] Theoretical and experimental study of phase optimization of tapping mode atomic force microscope
Zheng Wei(魏征), An-Jie Peng(彭安杰), Feng-Jiao Bin(宾凤姣), Ya-Xin Chen(陈亚鑫), and Rui Guan(关睿). Chin. Phys. B, 2022, 31(7): 076801.
[13] A novel demodulation method for transmission using nitrogen-vacancy-based solid-state quantum sensor
Ruixin Bai(白瑞昕), Xinyue Zhu(朱欣岳), Fan Yang(杨帆), Tianran Gao(高天然), Ziran Wang(汪子然), Linyan Yu(虞林嫣), Jinfeng Wang(汪晋锋), Li Zhou(周力), and Guanxiang Du(杜关祥). Chin. Phys. B, 2022, 31(7): 074203.
[14] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[15] Design of a low-frequency miniaturized piezoelectric antenna based on acoustically actuated principle
Yong Zhang(张勇), Zhong-Ming Yan(严仲明), Tian-Hao Han(韩天浩), Shuang-Shuang Zhu(朱双双), Yu Wang(王豫), and Hong-Cheng Zhou(周洪澄). Chin. Phys. B, 2022, 31(7): 077702.
No Suggested Reading articles found!