Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠)1, Guodong Zhu(朱国栋)1, Yingzhou Huang(黄映洲)2, and Yurui Fang(方蔚瑞)1,†
1 Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams(Ministry of Education), and School of Physics, Dalian University of Technology, Dalian 116024, China; 2 State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
Abstract Relationship of plasmonic properties of multiple clusters to molecular interactions and properties of a single cluster or molecule have become increasingly important due to the continuous emergence of molecular and cluster devices or systems. A hybrid phenomenon similar to plasmonic nanoparticle hybridization exists between two molecules with plasmon excitation modes. We use linear-response time-dependent density functional theory, real-time propagation time-dependent density functional theory, the plasmonicity index, and transition contribution maps (TCMs) to identify the plasmon excitation modes for the linear polyenes octatetraene with -OH and -NH2 groups and analyze the hybridization characteristics using charge transitions. The results show that molecular plasmon hybridization exists when the two molecules are coupled. The TCM analysis shows that the plasmon modes and hybridization result from collective and single-particle excitation. The plasmon mode is stronger, and the individual properties of the molecules are maintained after coupling when there is extra charge depose in the molecules because the electrons are moving in the molecules. This study provides new insights into the molecular plasmon hybridization of coupled molecules.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274054 and 12074054), and the Fundamental Research Funds for the Central Universities (Grant No. DUT21LK06).
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞) Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation 2023 Chin. Phys. B 32 037102
[1] Novotny L and Hecht B 2012 Principles of Nano-Optics (Cambridge: Cambridge University Press) [2] Kazuma E, Jung J, Ueba H, Trenary M and Kim Y 2018 Science360 521 [3] Chu W, Saidi W A and Prezhdo O V 2020 ACS Nano14 10608 [4] Zhang X, Li X, Reish M E, Zhang D, Su N Q, Gutierrez Y, Moreno F, Yang W, Everitt H O and Liu J 2018 Nano Lett.18 1714 [5] Li X, Xiao D and Zhang Z 2013 New J. Phys.15 023011 [6] Tame M S, McEnery K, Özdemir Ş, Lee J, Maier S A and Kim M 2013 Nat. Phys.9 329 [7] Rossi T P, Shegai T, Erhart P and Antosiewicz T J 2019 Nat. Commun.10 3336 [8] Rossi T P, Kuisma M, Puska M J, Nieminen R M and Erhart P 2017 J. Chem. Theory Comput.13 4779 [9] Schira R and Rabilloud F 2019 J. Phys. Chem. C123 6205 [10] Conley K M, Nayyar N, Rossi T P, Kuisma M, Turkowski V, Puska M J and Rahman T S 2019 ACS Nano13 5344 [11] Della Sala F, Pezzolla M, D'Agostino S and Fabiano E 2019 ACS Photon.6 1474 [12] Yan J, Yuan Z and Gao S 2007 Phys. Rev. Lett.98 216602 [13] Bernadotte S, Evers F and Jacob C R 2013 J. Phys. Chem. C117 1863 [14] Bursi L, Calzolari A, Corni S and Molinari E 2016 ACS Photon.3 520 [15] Krauter C M, Schirmer J, Jacob C R, Pernpointner M and Dreuw A 2014 J. Chem. Phys.141 104101 [16] Krauter C M, Bernadotte S, Jacob C R, Pernpointner M and Dreuw A 2015 J. Phys. Chem. C119 24564 [17] Zhang K, Wang H and Fang M 2019 Chem. Phys. Lett.721 38 [18] Lauchner A, Schlather A E, Manjavacas A, Cui Y, McClain M J, Stec G J, Garcia de Abajo F J, Nordlander P and Halas N J 2015 Nano Lett.15 6208 [19] Stec G J, Lauchner A, Cui Y, Nordlander P and Halas N J 2017 ACS Nano11 3254 [20] Zhang R, Bursi L, Cox J D, Cui Y, Krauter C M, Alabastri A, Manjavacas A, Calzolari A, Corni S, Molinari E, Carter E A, Garcia de Abajo F J, Zhang H and Nordlander P 2017 ACS Nano11 7321 [21] Manjavacas A, Marchesin F, Thongrattanasiri S, Koval P, Nordlander P, Sanchez-Portal D and García de Abajo F J 2013 ACS Nano7 3635 [22] Zeng S, Baillargeat D, Ho H P and Yong K T 2014 Chem. Soc. Rev.43 3426 [23] Zhang R, Zhang Y, Dong Z, Jiang S, Zhang C, Chen L, Zhang L, Liao Y, Aizpurua J and Luo Y E 2013 Nature498 82 [24] Moskovits M 2005 J. Raman Spectrosc.36 485 [25] Neubrech F, Huck C, Weber K, Pucci A and Giessen H 2017 Chem. Rev.117 5110 [26] Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J and Van Duyne R P 2008 Nat. Mater.7 442 [27] Oulton R F, Sorger V J, Genov D, Pile D and Zhang X 2008 Nat. Photon.2 496 [28] Cushing S K, Li J, Meng F, Senty T R, Suri S, Zhi M, Li M, Bristow A D and Wu N 2012 J. Am. Chem. Soc.134 15033 [29] Linic S, Christopher P and Ingram D B 2011 Nat. Mater.10 911 [30] Fang Y and Sun M 2015 Light Sci. Appl.4 e294 [31] Memmi H, Benson O, Sadofev S and Kalusniak S 2017 Phys. Rev. Lett.118 126802 [32] Dintinger J, Klein S, Bustos F, Barnes W L and Ebbesen T W 2005 Phys. Rev. B71 035424 [33] Cui Y, Lauchner A, Manjavacas A, Abajo F J G D, Halas N J and Nordlander P 2016 Nano Lett.16 6390 [34] Prodan E and Nordlander P 2004 J. Chem. Phys.120 5444 [35] Gil-Guerrero S, Peña-Gallego Á and Mandado M 2019 J. Phys. Chem. C124 1585 [36] Frisch M, Trucks G, Schlegel H, et al. 2016 Gaussian 16 (Gaussian, Inc. Wallingford, CT) [37] Becke A D 1988 Phys. Rev. A38 3098 [38] Parr R G 1980 Horizons of Quantum Chemistry (Berlin: Springer) pp. 5-15 [39] Yanai T, Tew D P and Handy N C 2004 Chem. Phys. Lett.393 51 [40] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett.77 3865 [41] Yabana K and Bertsch G 1996 Phys. Rev. B54 4484 [42] Blöchl P E 1994 Phys. Rev. B50 17953 [43] Rossi T P, Lehtola S, Sakko A, Puska M J and Nieminen R M 2015 J. Chem. Phys.142 094114 [44] Mortensen J J, Hansen L B and Jacobsen K W 2005 Phys. Rev. B71 035109 [45] Enkovaara J, Rostgaard C, Mortensen J J, et al. 2010 J. Phys.: Condens. Matter22 253202 [46] Larsen A H, Vanin M, Mortensen J J, Thygesen K S and Jacobsen K W 2009 Phys. Rev. B80 195112 [47] Kuisma M, Sakko A, Rossi T P, Larsen A H, Enkovaara J, Lehtovaara L and Rantala T T 2015 Phys. Rev. B91 115431 [48] Larsen A H, Mortensen J J, Blomqvist J, Castelli I E, Christensen R, Dulak M, Friis J, Groves M N, Hammer B and Hargus C 2017 J. Phys.: Condens. Matter29 273002 [49] Harris C R, Millman K J, Van Der Walt S J, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S and Smith N J 2020 Nature585 357 [50] Virtanen P, Gommers R, Oliphant T E, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W and Bright J 2020 Nat. Methods17 261 [51] Hunter J D 2007 Comput. Sci. Eng.9 90 [52] Malola S, Lehtovaara L, Enkovaara J and Hakkinen H 2013 Acs Nano7 10263 [53] Kuisma M, Rousseaux B, Czajkowski K M, Rossi T P, Shegai T, Erhart P and Antosiewicz T J 2022 ACS Photon.9 1065 [54] Zhang H, Ming S, Liang Y, Feng L, Talin A and Xu T 2019 ACS Appl. Mater. Inter.11 20581
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.