|
|
Electronic structure and magnetic properties of (Mn, N)-codoped ZnO |
Wang Qian-Jin (王前进)a, Wang Jin-Bin (王金斌)b, Zhong Xiang-Li (钟向丽)b, Tan Qiu-Hong (谭秋红)a, Liu Ying-Kai (刘应开)a |
a College of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China; b Faculty of Materials, Optoelectronics and Physics, Xiangtan University, Xiangtan 411105, China |
|
|
Abstract The electronic structures and magnetic properties of (Mn, N)-codoped ZnO are investigated by using the first-principles calculations. In the ferromagnetic state, as N substitutes for the intermediate O atom of the nearest neighboring Mn ions, about 0.5 electron per Mn2+ ion transfers to the N2- ion, which leads to the high-state Mn ions (close to +2.5) and trivalent N3- ions. In an antiferromagnetic state, one electron transfers to the N2- ion from the downspin Mn2+ ion, while no electron transfer occurs for the upspin Mn2+ ion. The (Mn, N)-codoped ZnO system shows ferromagnetism, which is attributed to the hybridization between Mn 3d and N 2p orbitals.
|
Received: 17 April 2014
Revised: 10 July 2014
Accepted manuscript online:
|
PACS:
|
31.15.E
|
(Density-functional theory)
|
|
71.55.Gs
|
(II-VI semiconductors)
|
|
75.30.Hx
|
(Magnetic impurity interactions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304273, 10764005, 11164034, 11072208, and 11032010), the Yunnan Provincial Natural Science Foundation, China (Grant No. 2010DC053), and the Scientific Research Foundation for Ph. D. Student of Yunnan Normal University. |
Corresponding Authors:
Wang Jin-Bin
E-mail: jbwang@xtu.edu.cn
|
Cite this article:
Wang Qian-Jin (王前进), Wang Jin-Bin (王金斌), Zhong Xiang-Li (钟向丽), Tan Qiu-Hong (谭秋红), Liu Ying-Kai (刘应开) Electronic structure and magnetic properties of (Mn, N)-codoped ZnO 2014 Chin. Phys. B 23 123101
|
|
| [1] | Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019
|
|
| [2] | Kittilstved K R, Norberg N S and Gamelin D R 2005 Phys. Rev. Lett. 94 147209
|
|
| [3] | Xu H Y, Liu Y C, Xu C S, Liu Y X, Shao C L and Mu R 2006 Appl. Phys. Lett. 88 242502
|
|
| [4] | Yan W S, Sun Z H, Liu Q H, Li Z R, Shi T S, Wang F, Qi Z M, Zhang G B and Wei S Q 2007 Appl. Phys. Lett. 90 242509
|
|
| [5] | Gu Z B, Lu M H, Wang J, Wu D, Zhang S T, Meng X K, Zhu Y Y, Zhu S N and Chen Y F 2006 Appl. Phys. Lett. 88 082111
|
|
| [6] | Ruan H B, Fang L, Li W J, Qin G P, Wu F and Kong C Y 2014 Mater. Sci. Semicond. Process. 21 52
|
|
| [7] | Wu K P, Gu S L, Tang K, Ye J D, Zhu S M, Zhou M R, Huang Y R, Xu M X, Zhang R and Zheng Y D 2012 J. Magn. Magn. Mater. 324 1649
|
|
| [8] | Wang D D, Xing G Z, Yan F, Yan Y S and Li S 2014 Appl. Phys. Lett. 104 022412
|
|
| [9] | Wu K P, Gu S L, Zhu S M, Huang Y R and Zhou M R 2012 Acta Phys. Sin. 61 057503 (in Chinese)
|
|
| [10] | Yang T Y, Kong C Y, Ruan H B, Qin G P, Li W J, Liang W W, Meng X D, Zhao Y H, Fang L and Cui Y T 2012 Acta Phys. Sin. 61 168101 (in Chinese)
|
|
| [11] | Assadi M H N, Zhang Y B and Li S 2009 J. Phys.: Condens. Matter 21 185503
|
|
| [12] | Wang Q, Sun Q and Jena P 2004 Phys. Rev. B 70 052408
|
|
| [13] | Zhao L, Lu P F, Yu Z Y, Guo X T, Shen Y, Ye H, Yuan G F and Zhang L 2010 J. Appl. Phys. 108 113924
|
|
| [14] | Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, Fabris S, Fratesi G, de Gironcoli S, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502
|
|
| [15] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
|
| [16] | Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
|
| [17] | Pack J D and Monkhorst H J 1977 Phys. Rev. B 16 1748
|
|
| [18] | Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616
|
|
| [19] | Hu S J, Yan S S, Zhao M W and Mei L M 2006 Phys. Rev. B 73 245205
|
|
| [20] | Shen L, Wu R Q, Pan H, Peng G W, Yang M, Sha Z D and Feng Y P 2008 Phys. Rev. B 78 073306
|
|
| [21] | Ye X J, Song H A, Zhong W, Xu M H, Qi X S, Jing C Q, Yang Z X, Au C T and Du Y W 2008 J. Phys. D: Appl. Phys. 41 155005
|
|
| [22] | Peng X Y and Ahuja R 2009 Appl. Phys. Lett. 94 102504
|
|
| [23] | Yang K S, Wu R Q, Shen L, Feng Y P, Dai Y and Huang B B 2010 Phys. Rev. B 81 125211
|
|
| [24] | Kudrnovský J, Turek I, Drchal V, Máca F, Weinberger P and Bruno P 2004 Phys. Rev. B 69 115208
|
|
| [25] | Mahmoud A B, von Bardeleben H J, Cantin J L, Mauger A, Chikoidze E and Dumont Y 2006 Phys. Rev. B 74 115203
|
|
| [26] | Droubay T C, Keavney D J, Kaspar T C, Heald S M, Wang C M, Johnson C A, Whitaker K M, Gamelin D R and Chambers S A 2009 Phys. Rev. B 79 155203
|
|
| [27] | Gopal P and Spaldin N A 2006 Phys. Rev. B 74 094418
|
|
| [28] | Cococcocioni M and de Gironcoli S 2005 Phys. Rev. B 71 035105
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|