Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 106802    DOI: 10.1088/1674-1056/23/10/106802
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First-principles calculations on Si (220) located 6H-SiC (1010) surface with different stacking sites

He Xiao-Min (贺小敏)a, Chen Zhi-Ming (陈治明)a, Pu Hong-Bin (蒲红斌)a, Li Lian-Bi (李连碧)b, Huang Lei (黄磊)a
a Department of Electronic Engineering, Xi'an University of Technology, Xi'an 710048, China;
b School of Science, Xi'an Polytechnic University, Xi'an 710048, China
Abstract  6H-SiC (1010) surface and Si (220)/6H-SiC (1010) interface with different stacking sites are investigated using first-principles calculations. Surface energies of 6H-SiC (1010) (case Ⅰ, case Ⅱ, and case Ⅲ) are firstly studied and the surface calculation results show that case Ⅱ and case Ⅲ are more stable than case Ⅰ. Then, the adhesion energies, fracture toughness values, interfacial energies, densities of states, and electronic structures of Si (220)/6H-SiC (1010) interfaces for three stacking models (AM, BM, and CM) are calculated. The CM model has the highest adhesion energy and the lowest interfacial energy, suggesting that the CM is stronger and more thermodynamically stable than AM and BM. Densities of states and the total charge densities give evidence that interfacial bonding is formed at the interface and that Si-Si and Si-C are induced due to the hybridization of C-2p and Si-3p. Moreover, the Si-C is much stronger than Si-Si at the interface, implying that the contribution of the interfacial bonding mainly comes from Si-C rather than Si-Si.
Keywords:  first-principles calculations      surface interface      adhesion energy  
Received:  12 December 2013      Revised:  11 April 2014      Accepted manuscript online: 
PACS:  68.35.Af (Atomic scale friction)  
  68.35.Ja (Surface and interface dynamics and vibrations)  
  68.35.bg (Semiconductors)  
  68.35.B- (Structure of clean surfaces (and surface reconstruction))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61076011 and 51177134).
Corresponding Authors:  He Xiao-Min     E-mail:  hmjmm@163.com
About author:  68.35.Af; 68.35.Ja; 68.35.bg; 68.35.B-

Cite this article: 

He Xiao-Min (贺小敏), Chen Zhi-Ming (陈治明), Pu Hong-Bin (蒲红斌), Li Lian-Bi (李连碧), Huang Lei (黄磊) First-principles calculations on Si (220) located 6H-SiC (1010) surface with different stacking sites 2014 Chin. Phys. B 23 106802

[19]Abdelkader H S and Faraoun H I 2011 J. Mater. Sci. 50 880
[1]Tchernycheva M, Nevou L, Doyennette L, Julien F H and Warde E 2006 Phys. Rev. B 73 125347
[2]Driscoll K, Bhattacharyya A, Moustakas T D, Paiella R, Zhou L and Smith D J 2007 Appl. Phys. Lett. 91 141104
[20]Sigumonrong D P, Music D and Schneider J M 2011 Comput. Mater. Sci. 50 1197
[21]Yin D, Peng X and Qin Y 2010 J. Appl. Phys. 108 033714
[3]Kandaswamy P K, Guillot F, Monroy E, Nevou L, Tchernycheva M, Michon A, Julien F H, Baumann E, Giorgetta F R, Hofstetter D, Remmele T, Albrecht M, Birner S and Dang L S 2008 J. Appl. Phys. 104 093501
[22]Chen K and Bielawski M 2008 Surf. Coat. Technol. 203 598
[4]Yang J, Sodabanlu H, Sugiyama M and Nakano Y 2009 Appl. Phys. Lett. 95 162111
[5]Hofstetter B D, Baumann E, Giorgetta F R, Wu H, Schaff W J, Ieee M, Dawlaty J, George P A, Eastman L F, Ieee F, Rana F, Kandaswamy P K, Guillot F and Monroy E 2010 Proc. IEEE 98 1234
[23]Lu S, Hu Q M and Yang R 2010 Phys. Rev. B 82 195103
[6]Huang C C, Xu F J, Yan X D, Song J, Xu Z Y, Cen L B, Wang Y, Pan J H, Wang X Q, Yang Z J, Shen B, Zhang B S, Chen X S and Lu W 2011 Appl. Phys. Lett. 98 132105
[24]Lee S J, Lee Y K and Soon A 2012 Appl. Surf. Sci. 25 89977
[25]Tang C, Meng L J, Sun L Z, Zhang K W and Zhong J X 2008 J. Appl. Phys. 104 113536
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[3] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[4] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[9] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[10] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[11] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[12] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[13] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[14] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[15] First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices
Huihui He(何慧卉) and Shenyuan Yang(杨身园). Chin. Phys. B, 2022, 31(1): 017104.
No Suggested Reading articles found!