Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 106107    DOI: 10.1088/1674-1056/23/10/106107
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Segregation of alloying atoms at a tilt symmetric grain boundary in tungsten and their strengthening and embrittling effects

Li Zhi-Wu (李志武), Kong Xiang-Shan (孔祥山), Liu-Wei (刘伟), Liu Chang-Song (刘长松), Fang Qian-Feng (方前峰)
Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
Abstract  We investigate the segregation behavior of alloying atoms (Sr, Th, In, Cd, Ag, Sc, Au, Zn, Cu, Mn, Cr, and Ti) near Σ3 (111) [110] tilt symmetric grain boundary (GB) in tungsten and their effects on the intergranular embrittlement by performing first-principles calculations. The calculated segregation energies suggest that Ag, Au, Cd, In, Sc, Sr, Th, and Ti prefer to occupy the site in the mirror plane of the GB, while Cu, Cr, Mn, and Zn intend to locate at the first layer nearby the GB core. The calculated strengthening energies predict Sr, Th, In, Cd, Ag, Sc, Au, Ti, and Zn act as embrittlers while Cu, Cr, and Mn act as cohesion enhancers. The correlation of the alloying atom's metal radius with strengthening energy is strong enough to predict the strengthening and embrittling behavior of alloying atoms; that is, the alloying atom with larger metal radius than W acts as an embrittler and the one with smaller metal radius acts as a cohesion enhancer.
Keywords:  grain boundary segregation      strengthening and embrittling effect      alloying atom      first-principles calculations  
Received:  07 November 2013      Revised:  04 April 2014      Accepted manuscript online: 
PACS:  61.66.Dk (Alloys )  
  61.72.Mm (Grain and twin boundaries)  
  28.52.Fa (Materials)  
Fund: Project supported by the National Magnetic Confinement Fusion Program (Grant No. 2011GB108004), the National Natural Science Foundation of China (Grant Nos. 91026002 and 91126002), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. KJCX2-YW-N35 and XDA03010303), and by the Center for Computation Science, Hefei Institutes of Physical Sciences.
Corresponding Authors:  Liu Chang-Song     E-mail:  csliu@issp.ac.cn
About author:  61.66.Dk; 61.72.Mm; 28.52.Fa

Cite this article: 

Li Zhi-Wu (李志武), Kong Xiang-Shan (孔祥山), Liu-Wei (刘伟), Liu Chang-Song (刘长松), Fang Qian-Feng (方前峰) Segregation of alloying atoms at a tilt symmetric grain boundary in tungsten and their strengthening and embrittling effects 2014 Chin. Phys. B 23 106107

[46]Schmidt C, Ernst F, Finnis M W and Vitek V 1995 Phys. Rev. Lett. 75 2160
[47]Grujicic M, Zhao H and Krasko G L 1997 Int. J. Refract. Met. Hard Mater. 15 341
[48]Fuks D, Mundim K C, Liubich V and Dorfman S 1999 Surf. Sci. Rev. Lett. 6 705
[49]Krasko G L 1993-1994 Int. J. Refract. Met. Hard Mater. 12 251
[50]Dorfman S, Liubich V, Fuks D and Mundim K C 2001 J. Phys.: Condens. Matter 13 6719
[51]Mikhailovskij I M, Sadanov E V, Mazilova T I, Dudka O V, Ksenofontov V A and Lugovska O I 2012 Mater. Lett. 70 60
[52]Borovikov V, Tang X Z, Perez D, Bai X M, Uberuaga B P and Voter A F 2013 Nucl. Fusion 53 063001
[1]van der Wiel W G, de Franceschi S, Elzerman J M, Fujisawa T, Tarucha S and Kouwenhoven L P 2002 Rev. Mod. Phys. 75 1
[53]Lee H and Tomar V 2013 Comput. Mater. Sci. 77 131
[54]Zhou Y M, He Y G, Lu A X and Wan Q 2009 Chin. Phys. B 18 3966
[2]Walter S, Trauzettel B and Schmidt T L 2013 Phys. Rev. B 88 195425
[55]Setyawan W and Kurtz R J 2012 Scripta Mater. 66 558
[3]Illera S, Prades J D, Cirera A and Cornet A 2012 Europhys. Lett. 98 17003
[4]Rinzan M, Jenkins G, Drew H D, Shafranjuk S and Barbara P 2012 Nano Lett 12 3097
[56]Zhang L, Fu C C and Lu G H 2013 Phys. Rev. B 87 134107
[5]Zheng X, Yan Y J and Ventra M D 2013 Phys. Rev. Lett. 111 086601
[57]Zhou H B, Liu Y L, Jin S, Zhang Y, Luo G N and Lu G H 2010 Nucl. Fusion 50 025016
[6]Dias da Silva L G G V, Vernek E, Ingersent K, Sandler N and Ulloa S E 2013 Phys. Rev. B 87 205313
[58]Kresse G, Hafner J 1993 Phys. Rev. B 47 558
[7]Zhao L L, Zhao H K and Wang J 2012 Phys. Lett. A 376 1849
[8]Lunde A M, López-Monís C, Vasiliadou I A, Bonilla L L and Platero G 2013 Phys. Rev. B 88 035317
[59]Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[9]Smit R H M, Noat Y, Untiedt C, Lang N D, van Hemert M C and van Ruitenbeek J M 2002 Nature 419 906
[60]Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[10]Zhitenev N B, Meng H and Bao Z 2002 Phys. Rev. Lett. 88 226801
[61]Kong X S, You Y W, Song C, Fang Q F, Chen J L, Luo G N and Liu C S 2012 J. Nucl. Mater. 430 270
[11]Qiu X H, Nazin G V and Ho W 2004 Phys. Rev. Lett. 92 206102
[62]Rasch K D, Siegel R W and Schultz H 1980 Philos. Mag. A 41 91
[63]McLean D 1957 Grain Boundaries in Metals (London: Oxford University Press)
[64]Bolt H, Barabash V, Krauss W, Linke J, Neu R, Suzuki S, Yoshida N and ASDEX Upgrade Team 2004 J. Nucl. Mater. 329-333 66
[12]Steele G A, Hüttel A K, Witkamp B, Poot M, Meerwaldt H B, Kouwenhoven L P and van der Zant H S J 2009 Science 325 1103
[65]Fukuzumi S, Yoshiie T, Satoh Y, Xu Q, Mori H and Kawai M 2005 J. Nucl. Mater. 343 308
[13]Lassagne B, Tarakanov Y, Kinaret J, Garcia-Sanchez D and Bachtold A 2009 Science 325 1107
[66]Rice J R and Wang J S 1989 Mater. Sci. Eng. 107 23
[1] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[2] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[3] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[9] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[10] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[11] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[12] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[13] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[14] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[15] First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices
Huihui He(何慧卉) and Shenyuan Yang(杨身园). Chin. Phys. B, 2022, 31(1): 017104.
No Suggested Reading articles found!