Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 106106    DOI: 10.1088/1674-1056/23/10/106106
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Epitaxial evolution on buried cracks in a strain-controlled AlN/GaN superlattice interlayer between AlGaN/GaN multiple quantum wells and a GaN template

Huang Cheng-Cheng (黄呈橙)a, Zhang Xia (张霞)a, Xu Fu-Jun (许福军)a, Xu Zheng-Yu (许正昱)a, Chen Guang (陈广)a, Yang Zhi-Jian (杨志坚)a, Tang Ning (唐宁)a, Wang Xin-Qiang (王新强)a b, Shen Bo (沈波)a b
a State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China;
b Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
Abstract  Epitaxial evolution of buried cracks in a strain-controlled AlN/GaN superlattice interlayer (IL) grown on GaN template, resulting in crack-free AlGaN/GaN multiple quantum wells (MQW), was investigated. The processes of filling the buried cracks include crack formation in the IL, coalescence from both side walls of the crack, build-up of an MQW-layer hump above the cracks, lateral expansion and merging with the surrounding MQW, and two-dimensional step flow growth. It was confirmed that the filling content in the buried cracks is pure GaN, originating from the deposition of the GaN thin layer directly after the IL. Migration of Ga adatoms into the cracks plays a key role in the filling the buried cracks.
Keywords:  AlGaN/GaN      multiple quantum wells      epitaxial evolution  
Received:  28 April 2014      Revised:  04 June 2014      Accepted manuscript online: 
PACS:  61.66.Dk (Alloys )  
  61.72.-y (Defects and impurities in crystals; microstructure)  
  61.72.J- (Point defects and defect clusters)  
  61.72.jd (Vacancies)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174008 and 61361166007), the National Basic Research Program of China (Grant Nos. 2012CB619306 and 2012CB619301), and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100001120012).
Corresponding Authors:  Xu Fu-Jun,Shen Bo     E-mail:  fjxu@pku.edu.cn;bshen@pku.edu.cn
About author:  61.66.Dk; 61.72.-y; 61.72.J-; 61.72.jd

Cite this article: 

Huang Cheng-Cheng (黄呈橙), Zhang Xia (张霞), Xu Fu-Jun (许福军), Xu Zheng-Yu (许正昱), Chen Guang (陈广), Yang Zhi-Jian (杨志坚), Tang Ning (唐宁), Wang Xin-Qiang (王新强), Shen Bo (沈波) Epitaxial evolution on buried cracks in a strain-controlled AlN/GaN superlattice interlayer between AlGaN/GaN multiple quantum wells and a GaN template 2014 Chin. Phys. B 23 106106

[9]Sengupta D, Mazumder S and Kuykendall W 2005 J. Cryst. Growth 279 369
[1]Maex K, Baklanov M R, Shamiryan D, Iacopi F, Brongersma and Yanovitskaya Z S 2003 J. Appl. Phys. 93 8793
[10]Mihopoulos T G, Gupta V and Jensen K F 1998 J. Cryst. Growth 195 733
[2]McGahay V 2010 Materials 3 536
[11]Narita T, Hikosaka T, Honda Y and Yamaguchi M 2003 Phys. Stat. Sol. 0 2154
[3]van Driel W D 2007 Microelectron. Reliab. 47 1969
[12]Jindal V, Shahedipour-sandvik F, Jindal V and Shahedipour-sandvik F 2010 J. Appl. Phys. 107 054907
[13]Takeuchi N, Selloni A, Myers T H and Doolittle A 2005 Phys. Rev. B 72 115307
[4]Hoofman R J O M, Michelon J, Bancken P H L, Daamen R, Verheijden G J A M, Arnal V, Hinsinger O, Gosset L G, Humbert A, Besling W F A, Goldberg C, Fox R, Michaelson L, Guedj C, Guillaumond J F, Jousseaume V, Arnaud L, Gravesteijn D J, Torres J and Passemard G 2005 Proceedings of the IEEE 2005 International Interconnect Technology Conference, June 6-8, 2005, California, USA, p. 85
[14]Zywietz T, Neugebauer J and Scheffler M 1998 Appl. Phys. Lett. 73 487
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[3] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[4] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[5] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[6] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[7] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[8] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[9] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[10] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[11] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
[12] High-frequency enhancement-mode millimeterwave AlGaN/GaN HEMT with an fT/fmax over 100 GHz/200 GHz
Sheng Wu(武盛), Minhan Mi(宓珉瀚), Xiaohua Ma(马晓华), Ling Yang(杨凌), Bin Hou(侯斌), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087102.
[13] Ferroelectric effect and equivalent polarization charge model of PbZr0.2Ti0.8O3 on AlGaN/GaN MIS-HEMT
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Ang Li(李昂), Kai Liu(刘凯), Yun-Long He(何云龙), Xiao-Li Lu(陆小力) and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(5): 057302.
[14] Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors
Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(4): 040502.
[15] Distribution of donor states on the surfaceof AlGaN/GaN heterostructures
Yue-Bo Liu(柳月波), Hong-Hui Liu(刘红辉), Jun-Yu Shen(沈俊宇), Wan-Qing Yao(姚婉青), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(12): 128102.
No Suggested Reading articles found!