Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 098503    DOI: 10.1088/1674-1056/23/9/098503
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Current-induced pseudospin polarization in silicene

Wang Lei (王磊), Zhu Guo-Bao (朱国宝)
Department of Physics and Electronic Engineering, Heze University, Heze 274015, China
Abstract  The pseudospin polarization induced by an external electric field in silicene in the presence of weakly spin-independent impurities is considered theoretically in the linear response regime based on Green's function method. We study the effects of the interplay between the sublattice potential and the intrinsic spin orbit coupling on the pseudospin polarization. We show that the pseudospin polarization perpendicular to the electric field is independent of the impurity parameter, while the pseudospin polarization in the direction of the electric field is sensitive to the impurity parameter. The dependences of the pseudospin polarizations on the chemical potential are studied.
Keywords:  silicene      pseudospin polarization      Green’s function  
Received:  21 March 2014      Revised:  23 April 2014      Accepted manuscript online: 
PACS:  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  72.80.Vp (Electronic transport in graphene)  
Fund: Project supported by the Shandong Young Scientists Award Fund, China (Grant No. 2012CL001).
Corresponding Authors:  Zhu Guo-Bao     E-mail:  zhuguobao@gmail.com

Cite this article: 

Wang Lei (王磊), Zhu Guo-Bao (朱国宝) Current-induced pseudospin polarization in silicene 2014 Chin. Phys. B 23 098503

[1] Topsakal M and Ciraci S 2010 Phys. Rev. B 81 024107
[2] Liu C C and Yao Y G 2011 Phys. Rev. Lett. 107 076802
[3] Liu C C and Yao Y G 2011 Phys. Rev. B 84 195430
[4] Pan H, Li Z, Liu C C, Zhu G, Qiao Z and Yao Y 2014 Phys. Rev. Lett. 112 106802
[5] Chen N and Wu K H 2013 Physics 42 604
[6] Ezawa M 2012 Phys. Rev. Lett. 109 055502
[7] Ezawa M 2012 New J. Phys. 14 033003
[8] Ezawa M 2012 Phys. Rev. B 86 161407
[9] Tabert C J and Nicol E J 2013 Phys. Rev. Lett. 110 197402
[10] Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D and Lu J 2012 Nano Lett. 12 113
[11] Stille L, Tabert C J and Nicol E J 2012 Phys. Rev. B 86 195405
[12] Ezawa M 2013 Phys. Rev. Lett. 110 026603
[13] Tahir M and Schwingenschögl U 2013 Sci. Rep. 3 1075
[14] Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B and Aufray B 2010 Appl. Phys. Lett. 96 223109
[15] Padova P De, Quaresima C, Ottaviani C, Sheverdyaeva P M, Moras P, Carbone C, Topwal D, Olivieri B, Kara A, Oughaddou H, Aufray B and Lay G Le 2010 Appl. Phys. Lett. 96 261905
[16] Padova P De, Quaresima C, Olivieri B, Perfetti P and Lay G Le 2011 Appl. Phys. Lett 98 081909
[17] Vogt P, Padova P De, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Lay G Le 2012 Phys. Rev. Lett. 108 155501
[18] Lin C L, Arafune R, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N and Kawai M 2012 Appl. Phys. Express 5 045802
[19] Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
[20] San-Jose P, Prada E, McCann E and Schomerus H 2009 Phys. Rev. Lett. 102 247204
[21] Liu W, MacDonald A H and Culcer D 2013 Phys. Rev. B 87 085408
[22] Zhou J 2008 arXiv: 0807.0667v1[cond-mat]
[23] Xia F, Farmer D B, Lin Y and Avouris P 2010 Nano Lett. 10 715
[24] Min H, Borghi G, Polini M and MacDonald A H 2008 Phys. Rev. B 77 041407(R)
[25] Trushin M and Schliemann J 2011 Phys. Rev. Lett. 107 156801
[26] Majidi L and Zareyan M 2011 Phys. Rev. B 83 115422
[27] Jia S W, Wang J T, Yang Y L and Bai C X 2013 Chin. Phys. B 22 087408
[28] Xu J, Zhan S C and Shangguan W Z 2005 Chin. Phys. 14 2093
[29] Yan W X and Li X Rong 2006 Chin. Phys. 15 822
[30] Haug H and Jauho H P 1998 Quantum Kinetics in Transport and Optics of Semiconductors (Heidelberg: Springer-Verlag)
[31] Pan W Y and Li K 2002 Chin. Phys. 11 1245
[32] Ren X R, Teng S Y, Xu Z Zhan, Cheng C F, Liu M and Liu C X 2004 Acta Phys. Sin. 53 427 (in Chinese)
[33] Ni J and Dai Z H 2005 Acta Phys. Sin. 54 3342 (in Chinese)
[34] Liu G B and Liu B G 2009 Chin. Phys. B 18 5047
[35] Sinitsyn N A, MacDonald A H, Jungwirth T, Dugaev V K and Sinova J 2007 Phys. Rev. B 75 045315
[36] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539
[37] Yang S A, Pan H, Yao Y and Niu Q 2011 Phys. Rev. B 83 125122
[38] Nunner T S, Sinitsyn N A, Borunda M F, Dugaev V K, Kovalev A A, Abanov A, Timm C, Jungwirth T, Inoue J, MacDonald A H and Sinova J 2007 Phys. Rev. B 76 235312
[1] Spin transport properties for B-doped zigzag silicene nanoribbons with different edge hydrogenations
Jing-Fen Zhao(赵敬芬), Hui Wang(王辉), Zai-Fa Yang(杨在发), Hui Gao(高慧), Hong-Xia Bu(歩红霞), and Xiao-Juan Yuan(袁晓娟). Chin. Phys. B, 2022, 31(1): 017302.
[2] Tunable valley filter efficiency by spin-orbit coupling in silicene nanoconstrictions
Yi-Jian Shi(施一剑), Yuan-Chun Wang(王园春), and Peng-Jun Wang(汪鹏君). Chin. Phys. B, 2021, 30(5): 057201.
[3] Goos-Hänchen-like shift related to spin and valley polarization in ferromagnetic silicene
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2021, 30(10): 107302.
[4] Synthesis of new silicene structure and its energy band properties
Wei-Qi Huang(黄伟其), Shi-Rong Liu(刘世荣), Hong-Yan Peng(彭鸿雁), Xin Li(李鑫), Zhong-Mei Huang(黄忠梅). Chin. Phys. B, 2020, 29(8): 084202.
[5] Generation of valley pump currents in silicene
John Tombe Jada Marcellino, Mei-Juan Wang(王美娟), Sa-Ke Wang(汪萨克). Chin. Phys. B, 2019, 28(1): 017204.
[6] Electronic properties of silicene in BN/silicene van der Waals heterostructures
Ze-Bin Wu(吴泽宾), Yu-Yang Zhang(张余洋), Geng Li(李更), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2018, 27(7): 077302.
[7] Electrical controllable spin valves in a zigzag silicene nanoribbon ferromagnetic junction
Lin Zhang(张林). Chin. Phys. B, 2018, 27(6): 067203.
[8] Spin-current pump in silicene
John Tombe Jada Marcellino, Mei-Juan Wang(王美娟), Sa-Ke Wang(汪萨克), Jun Wang(汪军). Chin. Phys. B, 2018, 27(5): 057801.
[9] Distinct edge states and optical conductivities in the zigzag and armchair silicene nanoribbons under exchange and electric fields
Jianfei Zou(邹剑飞), Jing Kang(康静). Chin. Phys. B, 2018, 27(3): 037301.
[10] Comparisons of electrical and optical properties between graphene and silicene-A review
Wirth-Lima A J, Silva M G, Sombra A S B. Chin. Phys. B, 2018, 27(2): 023201.
[11] Effect of isotope doping on phonon thermal conductivity of silicene nanoribbons: A molecular dynamics study
Run-Feng Xu(徐润峰), Kui Han(韩奎), Hai-Peng Li(李海鹏). Chin. Phys. B, 2018, 27(2): 026801.
[12] The nonlocal transport and switch effect in light- and electric-controlled silicene-superconductor hybrid structure
Fenghua Qi(戚凤华), Jun Cao(曹军), Jie Cao(曹杰), Lifa Zhang(张力发). Chin. Phys. B, 2018, 27(12): 127401.
[13] Quantum transport through a Z-shaped silicene nanoribbon
A Ahmadi Fouladi. Chin. Phys. B, 2017, 26(4): 047304.
[14] Spin-valley-dependent transport and giant tunneling magnetoresistance in silicene with periodic electromagnetic modulations
Yi-Man Liu(刘一曼), Huai-Hua Shao(邵怀华), Guang-Hui Zhou(周光辉), Hong-Guang Piao(朴红光), Li-Qing Pan(潘礼庆), Min Liu(刘敏). Chin. Phys. B, 2017, 26(12): 127303.
[15] Spin-valley Hall conductivity of doped ferromagnetic silicene under strain
Bahram Shirzadi, Mohsen Yarmohammadi. Chin. Phys. B, 2017, 26(1): 017203.
No Suggested Reading articles found!