INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Current-induced pseudospin polarization in silicene |
Wang Lei (王磊), Zhu Guo-Bao (朱国宝) |
Department of Physics and Electronic Engineering, Heze University, Heze 274015, China |
|
|
Abstract The pseudospin polarization induced by an external electric field in silicene in the presence of weakly spin-independent impurities is considered theoretically in the linear response regime based on Green's function method. We study the effects of the interplay between the sublattice potential and the intrinsic spin orbit coupling on the pseudospin polarization. We show that the pseudospin polarization perpendicular to the electric field is independent of the impurity parameter, while the pseudospin polarization in the direction of the electric field is sensitive to the impurity parameter. The dependences of the pseudospin polarizations on the chemical potential are studied.
|
Received: 21 March 2014
Revised: 23 April 2014
Accepted manuscript online:
|
PACS:
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
Fund: Project supported by the Shandong Young Scientists Award Fund, China (Grant No. 2012CL001). |
Corresponding Authors:
Zhu Guo-Bao
E-mail: zhuguobao@gmail.com
|
Cite this article:
Wang Lei (王磊), Zhu Guo-Bao (朱国宝) Current-induced pseudospin polarization in silicene 2014 Chin. Phys. B 23 098503
|
[1] |
Topsakal M and Ciraci S 2010 Phys. Rev. B 81 024107
|
[2] |
Liu C C and Yao Y G 2011 Phys. Rev. Lett. 107 076802
|
[3] |
Liu C C and Yao Y G 2011 Phys. Rev. B 84 195430
|
[4] |
Pan H, Li Z, Liu C C, Zhu G, Qiao Z and Yao Y 2014 Phys. Rev. Lett. 112 106802
|
[5] |
Chen N and Wu K H 2013 Physics 42 604
|
[6] |
Ezawa M 2012 Phys. Rev. Lett. 109 055502
|
[7] |
Ezawa M 2012 New J. Phys. 14 033003
|
[8] |
Ezawa M 2012 Phys. Rev. B 86 161407
|
[9] |
Tabert C J and Nicol E J 2013 Phys. Rev. Lett. 110 197402
|
[10] |
Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D and Lu J 2012 Nano Lett. 12 113
|
[11] |
Stille L, Tabert C J and Nicol E J 2012 Phys. Rev. B 86 195405
|
[12] |
Ezawa M 2013 Phys. Rev. Lett. 110 026603
|
[13] |
Tahir M and Schwingenschögl U 2013 Sci. Rep. 3 1075
|
[14] |
Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B and Aufray B 2010 Appl. Phys. Lett. 96 223109
|
[15] |
Padova P De, Quaresima C, Ottaviani C, Sheverdyaeva P M, Moras P, Carbone C, Topwal D, Olivieri B, Kara A, Oughaddou H, Aufray B and Lay G Le 2010 Appl. Phys. Lett. 96 261905
|
[16] |
Padova P De, Quaresima C, Olivieri B, Perfetti P and Lay G Le 2011 Appl. Phys. Lett 98 081909
|
[17] |
Vogt P, Padova P De, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Lay G Le 2012 Phys. Rev. Lett. 108 155501
|
[18] |
Lin C L, Arafune R, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N and Kawai M 2012 Appl. Phys. Express 5 045802
|
[19] |
Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
|
[20] |
San-Jose P, Prada E, McCann E and Schomerus H 2009 Phys. Rev. Lett. 102 247204
|
[21] |
Liu W, MacDonald A H and Culcer D 2013 Phys. Rev. B 87 085408
|
[22] |
Zhou J 2008 arXiv: 0807.0667v1[cond-mat]
|
[23] |
Xia F, Farmer D B, Lin Y and Avouris P 2010 Nano Lett. 10 715
|
[24] |
Min H, Borghi G, Polini M and MacDonald A H 2008 Phys. Rev. B 77 041407(R)
|
[25] |
Trushin M and Schliemann J 2011 Phys. Rev. Lett. 107 156801
|
[26] |
Majidi L and Zareyan M 2011 Phys. Rev. B 83 115422
|
[27] |
Jia S W, Wang J T, Yang Y L and Bai C X 2013 Chin. Phys. B 22 087408
|
[28] |
Xu J, Zhan S C and Shangguan W Z 2005 Chin. Phys. 14 2093
|
[29] |
Yan W X and Li X Rong 2006 Chin. Phys. 15 822
|
[30] |
Haug H and Jauho H P 1998 Quantum Kinetics in Transport and Optics of Semiconductors (Heidelberg: Springer-Verlag)
|
[31] |
Pan W Y and Li K 2002 Chin. Phys. 11 1245
|
[32] |
Ren X R, Teng S Y, Xu Z Zhan, Cheng C F, Liu M and Liu C X 2004 Acta Phys. Sin. 53 427 (in Chinese)
|
[33] |
Ni J and Dai Z H 2005 Acta Phys. Sin. 54 3342 (in Chinese)
|
[34] |
Liu G B and Liu B G 2009 Chin. Phys. B 18 5047
|
[35] |
Sinitsyn N A, MacDonald A H, Jungwirth T, Dugaev V K and Sinova J 2007 Phys. Rev. B 75 045315
|
[36] |
Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539
|
[37] |
Yang S A, Pan H, Yao Y and Niu Q 2011 Phys. Rev. B 83 125122
|
[38] |
Nunner T S, Sinitsyn N A, Borunda M F, Dugaev V K, Kovalev A A, Abanov A, Timm C, Jungwirth T, Inoue J, MacDonald A H and Sinova J 2007 Phys. Rev. B 76 235312
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|