Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 098701    DOI: 10.1088/1674-1056/23/9/098701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Discrete energy transport in collagen molecules

Alain Mvogoa, Germain H. Ben-Bolieb c, Timoléon C. Kofanéc d
a Laboratory of Biophysics, Department of Physics, Faculty of Science, University of Yaounde I;
b Laboratory of Nuclear Physics, Department of Physics, Faculty of Science, University of Yaounde I;
c Centre d'Excellence Africain en Technologies de l'Information et de la Communication, University of Yaounde I;
d Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Yaounde I, P. O. Box 812, Yaounde, Cameroon
Abstract  The modulational instability in the three coupled α-polypeptide chains of a collagen molecule is investigated. Choosing symmetric and asymmetric solutions, and applying the so-called rotating-wave approximation, we describe the dynamics of the system by the discrete nonlinear Schrödinger (DNLS) equation. The linear stability analysis of the continuous wave solution is performed. The numerical simulations show the generation of trains of solitonic structures in the lattice with increasing amplitude as time progresses. The effect of damping and noise forces of the physiological temperature (T=300 K) introduces an erratic behavior to the formed patterns, reinforcing the idea that the energy used in metabolic processes is confined to specific regions for efficiency.
Keywords:  modulational instability      collagen molecules      damping      noise force  
Received:  13 January 2014      Revised:  27 March 2014      Accepted manuscript online: 
PACS:  87.10.+e  
  05.45.Yv (Solitons)  
Corresponding Authors:  Alain Mvogo     E-mail:  mvogal_2009@yahoo.fr

Cite this article: 

Alain Mvogo, Germain H. Ben-Bolie, Timoléon C. Kofané Discrete energy transport in collagen molecules 2014 Chin. Phys. B 23 098701

[1] Creeighton T E 1983 Proteins: Structures and Molecular properties (New York: Freeman) p. 195
[2] Nemethy G and Scheraga H A 1989 Biopolymers 28 1573
[3] Gunwar S 1991 J. Biol. Chem. 266 15318
[4] Johansson C 1992 J. Biol. Chem. 267 24533
[5] Kadler K E, Baldock C, Bella J and Boot-Handford R P 2007 J. Cell Sci. 120 1955
[6] Myllyharju J and Kivirikko K I 2004 Trends Genet. 20 33
[7] Agarwal P 2012 J. Biol. Chem. 287 22549
[8] Birk D E and Mayne R 1997 Eur. J. Cell Biol. 72 352
[9] Blaschke U K, Eikenberry E F, Hulmes D J, Galla H J and Bruckner P 2000 J. Biol. Chem. 275 10370
[10] Li F L 1987 Phys. Scr. 36 966
[11] Davydov A S 1973 J. Theor. Biol. 38 559
[12] Davydov A S and Kislukha N I 1973 Phys. Status Solidi b 39 465
[13] Davydov A S and Kislukha N I 1976 Phys. Status Solidi b 75 735
[14] Xiao Y and Lin X 1997 Commun. Theor. Phys. 28 253
[15] Ondoua R Y, Tabi C B, Ekobena Fouda H P, Mohamadou A and Kofané T C 2012 Eur. Phys. J. B 85 318
[16] Ekobena Fouda H P, Tabi C B, Mohamadou A and Kofane T C 2011 J. Phys.: Condens. Matter 23 375104
[17] Tabi C B, Mohamadou A and Kofane T C 2009 J. Phys.: Condens. Matter 21 335101
[18] Dang Koko A, Tabi C B, Ekobena Fouda H P, Mohamadou A and Kofané T C 2012 Chaos 22 043110
[19] Mimshe Fewu J C, Tabi C B, Edongue H, Ekobena Fouda H P and Kofane T C 2013 Phys. Scr. 87 025801
[20] Mvogo A, Ben-Bolie G H and Kofane T C 2013 Eur. Phys. J. B 86 413
[21] Scott A C 1992 Phys. Rep. 217 1
[22] Kivshar Y S and Peyrard M 1992 Phys. Rev. A 46 3198
[23] Simo E and Caputo J G 2008 Chin. J. Phys. 46 201
[24] Pang X F 2004 Commun. Theor. Phys. 41 470
[25] Hennig D, Neibner C, Velarde M G and Ebelig W E 2006 Phys. Rev. B 73 024306
[1] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[2] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[3] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[4] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[5] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[6] Gilbert damping in the layered antiferromagnet CrCl3
Xinlin Mi(米锌林), Ledong Wang(王乐栋), Qi Zhang(张琪), Yitong Sun(孙艺彤), Yufeng Tian(田玉峰), Shishen Yan(颜世申), and Lihui Bai(柏利慧). Chin. Phys. B, 2022, 31(2): 027505.
[7] Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2
Lijun Ni(倪丽君), Zhendong Chen(陈振东), Wei Li(李威), Xianyang Lu(陆显扬), Yu Yan(严羽), Longlong Zhang(张龙龙), Chunjie Yan(晏春杰), Yang Chen(陈阳), Yaoyu Gu(顾耀玉), Yao Li(黎遥), Rong Zhang(张荣), Ya Zhai(翟亚), Ronghua Liu(刘荣华), Yi Yang(杨燚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2021, 30(9): 097501.
[8] Propagation dynamics of relativistic electromagnetic solitary wave as well as modulational instability in plasmas
Rong-An Tang(唐荣安), Tiao-Fang Liu(刘调芳), Xue-Ren Hong(洪学仁), Ji-Ming Gao(高吉明), Rui-Jin Cheng(程瑞锦), You-Lian Zheng(郑有莲), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(1): 015201.
[9] Dynamics of the plane and solitary waves in a Noguchi network: Effects of the nonlinear quadratic dispersion
S A T Fonkoua, M S Ngounou, G R Deffo, F B Pelap, S B Yamgoue, A Fomethe. Chin. Phys. B, 2020, 29(3): 030501.
[10] Temperature-dependent Gilbert damping in Co2 FeAl thin films with different B2 ordering degrees
Gesang Dunzhu(格桑顿珠), Yi-Bing Zhao(赵逸冰), Ying Jin(金莹), Cai Zhou(周偲), and Chang-Jun Jiang(蒋长军). Chin. Phys. B, 2020, 29(12): 126701.
[11] Gravity-capillary waves modulated by linear shear flow in arbitrary water depth
Shaofeng Li(李少峰), Jinbao Song(宋金宝), and Anzhou Cao(曹安州). Chin. Phys. B, 2020, 29(12): 124702.
[12] Giant anisotropy of magnetic damping and significant in-plane uniaxial magnetic anisotropy in amorphous Co40Fe40B20 films on GaAs(001)
Ji Wang(王佶), Hong-Qing Tu(涂宏庆), Jian Liang(梁健), Ya Zhai(翟亚), Ruo-Bai Liu(刘若柏), Yuan Yuan(袁源), Lin-Ao Huang(黄林傲), Tian-Yu Liu(刘天宇), Bo Liu(刘波)†, Hao Meng(孟皓), Biao You(游彪), Wei Zhang(张维), Yong-Bing Xu(徐永兵), and Jun Du(杜军)‡. Chin. Phys. B, 2020, 29(10): 107503.
[13] The unique magnetic damping enhancement in epitaxial Co2Fe1-xMnxAl films
Shu-Fa Li(李树发), Chu-Yuan Cheng(程樗元), Kang-Kang Meng(孟康康), Chun-Lei Chen(陈春雷). Chin. Phys. B, 2019, 28(9): 097502.
[14] Efficient molecular model for squeeze-film damping in rarefied air
Cun-Hao Lu(陆存豪), Pu Li(李普), Yu-Ming Fang(方玉明). Chin. Phys. B, 2019, 28(9): 098501.
[15] Discrete modulational instability and bright localized spin wave modes in easy-axis weak ferromagnetic spin chains involving the next-nearest-neighbor coupling
Jiayu Xie(谢家玉), Zhihao Deng(邓志豪), Xia Chang(昌霞), Bing Tang(唐炳). Chin. Phys. B, 2019, 28(7): 077501.
No Suggested Reading articles found!