Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 098502    DOI: 10.1088/1674-1056/23/9/098502
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Introduction of F4-TCNQ/MoO3 layers for thermoelectric devices based on pentacene

Wu Shuang-Hong (吴双红)a b c, Ryosuke Nakamichia b, Masatsugu Tanedaa b, Zhang Qi-Sheng (张其胜)d, Chihaya Adachia b d
a Life BEANS Center Kyushu, Bio Electromechanical Autonomous Nano-Systems (BEANS) Laboratory, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
b Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
c School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China;
d Center for Organic Photonics and Electronics Research (OPERA) and International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
Abstract  We introduced a dual electron accepting layer composed of tetrafluoro-tetracyanoquinodimethane (F4-TCNQ) and MoO3 for thermoelectric devices based on a pentacene layer. We found that the power factor is enhanced by placing an F4-TCNQ layer directly in contact with the pentacene layer and it is also enhanced by placing a MoO3 layer between the F4-TCNQ layer and the Au electrode. By examining the contact resistance using a field effect transistor and a hole-only diode, we confirmed that the hole injection is improved due to the reduction of contact resistance at the interface between the MoO3 layer and the Au electrode.
Keywords:  thermoelectrics      pentacene      MoO3      contact resistance  
Received:  18 February 2014      Revised:  25 April 2014      Accepted manuscript online: 
PACS:  85.50.Fi  
  84.60.Rb (Thermoelectric, electrogasdynamic and other direct energy conversion)  
  73.50.Lw (Thermoelectric effects)  
Fund: Project supported by the New Energy and Industrial Technology Development Organization (NEDO), the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST), and the International Institute for Carbon Neutral Energy Research (WPI-I2CNER) sponsored by MEXT.
Corresponding Authors:  Chihaya Adachi     E-mail:  adachi@cstf.kyushu-u.ac.jp

Cite this article: 

Wu Shuang-Hong (吴双红), Ryosuke Nakamichi, Masatsugu Taneda, Zhang Qi-Sheng (张其胜), Chihaya Adachi Introduction of F4-TCNQ/MoO3 layers for thermoelectric devices based on pentacene 2014 Chin. Phys. B 23 098502

[1] Tritt T M 1999 Science 283 804
[2] Shakouri A 2011 Annu. Rev. Mater. Res. 41 399
[3] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S and Snyder G J 2008 Science 321 554
[4] Nolas G S, Sharp J and Goldsmid H 2001 Thermoelectrics: Basic Principles and New Materials Developments (Berlin: Springer-Verlag) p. 91
[5] Zebarjadi M, Esfarjani K, Dresselhaus M S, Ren Z F and Chen G 2012 Energy Environ. Sci. 5 5147
[6] Bubnova O and Crispin X 2012 Energy Environ. Sci. 5 9345
[7] Sun Y M, Sheng P, Di C A, Jiao F, Xu W, Qiu D and Zhu D B 2012 Adv. Mater. 24 932
[8] He M, Qiu F and Lin Z Q 2013 Energy Environ. Sci. 6 1352
[9] Pernstich K, Rössner P and Batlogg B 2008 Nat. Mater. 7 321
[10] Zhang B, Sun J, Katz H E, Fang F and Opila R L 2010 ACS Appl. Mater. Interfaces 2 3170
[11] Yue R R and Xu J K 2012 Synth. Met. 162 912
[12] Harada K, Sumino M, Adachi C, Tanaka S and Miyazaki K 2010 Appl. Phys. Lett. 96 253304
[13] Sumino M, Harada K, Ikeda M, Tanaka S, Miyazaki K and Adachi C 2011 Appl. Phys. Lett. 99 093308
[14] Venkatasubramanian R, Siivola E, Colpitts T and O'Quinn B 2001 Nature 413 597
[15] Biswas K, He J Q, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P and Kanatzidis M G 2012 Nature 489 414
[16] Bubnova O, Khan Z U, Malti A, Braun S, Fahlman M, Berggren M and Crispin X 2011 Nat. Mater. 10 429
[17] Gao W and Kahn A 2001 Appl. Phys. Lett. 79 4040
[18] Zhou X, Pfeiffer M, Blochwitz J, Werner A, Nollau A, Fritz T and Leo K 2001 Appl. Phys. Lett. 78 410
[19] Wu S H, Lo M F, Chen Z Y, Ng T W, Mo H W, Hu X, Wu C, Li W L and Lee C S 2012 Physica Status Solidi 6 129
[20] Meyer J, Hamwi S, Kröger M, Kowalsky W, Riedl T and Kahn A 2012 Adv. Mater. 24 5408
[21] Ha S D and Kahn A 2009 Phys. Rev. B 80 195410
[22] Ha S D, Meyer J and Kahn A 2010 Phys. Rev. B 82 155434
[23] Pfeiffer M, Beyer A, Fritz T and Leo K 1998 Appl. Phys. Lett. 73 3202
[24] Kröger M, Hamwi S, Meyer J, Riedl T, Kowalsky W and Kahn A 2009 Org. Electron. 10 932
[25] Chu C W, Li S H, Chen C W, Shrotriya V and Yang Y 2005 Appl. Phys. Lett. 87 193508
[26] Wang Z K, Alam M W, Lou Y H, Naka S and Okada H 2012 Appl. Phys. Lett. 100 043302
[1] Strong chirality in twisted bilayer α-MoO3
Bi-Yuan Wu(吴必园), Zhang-Xing Shi(石章兴), Feng Wu(吴丰), Ming-Jun Wang(王明军), and Xiao-Hu Wu(吴小虎). Chin. Phys. B, 2022, 31(4): 044101.
[2] Structure design for high performance n-type polymer thermoelectric materials
Qi Zhang(张奇), Hengda Sun(孙恒达), and Meifang Zhu(朱美芳). Chin. Phys. B, 2022, 31(2): 028506.
[3] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[4] Topology of triple-point metals
Georg W. Winkler, Sobhit Singh, Alexey A. Soluyanov. Chin. Phys. B, 2019, 28(7): 077303.
[5] Hunting down the ohmic contact of organic field-effect transistor
M Micjan, M Novota, P Telek, M Donoval, M Weis. Chin. Phys. B, 2019, 28(11): 118501.
[6] Heat transfer of liquid metal alloy on copper plate deposited with film of different surface free energy
Huilong Yan(闫慧龙), Jinliang Yan(闫金良), Gang Zhao(赵刚). Chin. Phys. B, 2019, 28(11): 114401.
[7] Se substitution and micro-nano-scale porosity enhancing thermoelectric Cu2Te
Xiaoman Shi(史晓曼), Guoyu Wang(王国玉), Ruifeng Wang(王瑞峰), Xiaoyuan Zhou(周小元), Jingtao Xu(徐静涛), Jun Tang(唐军), Ran Ang(昂然). Chin. Phys. B, 2018, 27(4): 047204.
[8] Thermal conductivity of nanowires
Zhongwei Zhang(张忠卫), Jie Chen(陈杰). Chin. Phys. B, 2018, 27(3): 035101.
[9] Effects of Mn substitution on thermoelectric properties of CuIn1-xMnxTe2
Pengfei Luo(罗鹏飞), Li You(游理), Jiong Yang(杨炯), Juanjuan Xing(邢娟娟), Jiye Zhang(张继业), Chenyang Wang(王晨阳), Xinluo Zhao(赵新洛), Jun Luo(骆军), Wenqing Zhang(张文清). Chin. Phys. B, 2017, 26(9): 097201.
[10] Lowering the driving voltage and improving the luminance of blue fluorescent organic light-emitting devices by thermal annealing a hole injection layer of pentacene
Jian Gao(高建), Qian-Qian Yu(于倩倩), Juan Zhang(张娟), Yang Liu(刘洋), Ruo-Fei Jia(贾若飞), Jun Han(韩俊), Xiao-Ming Wu(吴晓明), Yu-Lin Hua(华玉林), Shou-Gen Yin(印寿根). Chin. Phys. B, 2017, 26(9): 098507.
[11] Transparent conducting indium-tin-oxide (ITO) film as full front electrode in III-V compound solar cell
Pan Dai(代盼), Jianya Lu(卢建娅), Ming Tan(谭明), Qingsong Wang(王青松), Yuanyuan Wu(吴渊渊), Lian Ji(季莲), Lifeng Bian(边历峰), Shulong Lu(陆书龙), Hui Yang(杨辉). Chin. Phys. B, 2017, 26(3): 037305.
[12] Depositing aluminum as sacrificial metal to reduce metal-graphene contact resistance
Da-cheng Mao(毛达诚), Zhi Jin(金智), Shao-qing Wang(王少青), Da-yong Zhang(张大勇), Jing-yuan Shi(史敬元), Song-ang Peng(彭松昂), Xuan-yun Wang(王选芸). Chin. Phys. B, 2016, 25(7): 078103.
[13] Contact resistance asymmetry of amorphous indium-gallium-zinc-oxide thin-film transistors by scanning Kelvin probe microscopy
Chen-Fei Wu(武辰飞), Yun-Feng Chen(陈允峰), Hai Lu(陆海), Xiao-Ming Huang(黄晓明), Fang-Fang Ren(任芳芳), Dun-Jun Chen(陈敦军), Rong Zhang(张荣), You-Dou Zheng(郑有炓). Chin. Phys. B, 2016, 25(5): 057306.
[14] Low specific contact resistivity to graphene achieved by AuGe/Ni/Au and annealing process
Shu-Zhen Yu(于淑珍), Yan Song(宋焱), Jian-Rong Dong(董建荣), Yu-Run Sun(孙玉润), Yong-Ming Zhao(赵勇明), Yang He(何洋). Chin. Phys. B, 2016, 25(11): 118101.
[15] Effect of CuPc and MoO3 co-evaporated layer on the conductivity of organic light emitting diodes
He Ze-Shang (何泽尚), Yu Hao-Miao (于浩淼), Peng Huan (彭欢), Hou Xiao-Yuan (侯晓远). Chin. Phys. B, 2015, 24(9): 097201.
No Suggested Reading articles found!