Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 096803    DOI: 10.1088/1674-1056/23/9/096803
RAPID COMMUNICATION Prev   Next  

Influence of reaction parameters on synthesis of high-quality single-layer graphene on Cu using chemical vapor deposition

Yang He (杨贺), Shen Cheng-Min (申承民), Tian Yuan (田园), Wang Gao-Qiang (王高强), Lin Shao-Xiong (林少雄), Zhang Yi (张一), Gu Chang-Zhi (顾长志), Li Jun-Jie (李俊杰), Gao Hong-Jun (高鸿钧)
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Large-area monolayer graphene samples grown on polycrystalline copper foil by thermal chemical vapor deposition with differing CH4 flux and growth time are investigated by Raman spectra, scanning electron microscopy, atomic force microscopy, and scanning tunneling microscopy. The defects, number of layers, and quality of graphene are shown to be controllable through tuning the reaction conditions: ideally to 2-3 sccm CH4 for 30 minutes.
Keywords:  graphene      chemical vapor deposition      Raman spectra  
Received:  23 April 2014      Revised:  06 May 2014      Accepted manuscript online: 
PACS:  68.65.Pq (Graphene films)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  78.30.-j (Infrared and Raman spectra)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2013CB933604, 2010CB923004, and 2009CB929103), the National Natural Science Foundation of China, and the Chinese Academy of Sciences.
Corresponding Authors:  Gao Hong-Jun     E-mail:  hjgao@iphy.ac.cn

Cite this article: 

Yang He (杨贺), Shen Cheng-Min (申承民), Tian Yuan (田园), Wang Gao-Qiang (王高强), Lin Shao-Xiong (林少雄), Zhang Yi (张一), Gu Chang-Zhi (顾长志), Li Jun-Jie (李俊杰), Gao Hong-Jun (高鸿钧) Influence of reaction parameters on synthesis of high-quality single-layer graphene on Cu using chemical vapor deposition 2014 Chin. Phys. B 23 096803

[1] Allen M J, Tung V C and Kaner R B 2010 Chem. Rev. 110 132
[2] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[3] Jiang Z, Zhang Y, Tan Y W, Stormer H L and Kim P 2007 Solid State Commun. 143 14
[4] Xu D, Ivan S, Fabian D, Adina L and Eva Y A 2009 Nature 462 192
[5] Lee C G, Wei X D, Kysar J W and Hone J 2008 Science 321 385
[6] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[7] Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902
[8] Bolotina K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H L 2008 Solid State Commun. 146 351
[9] Xu D, Ivan S, Anthony B and Eva Y A 2008 Nat. Nanotechnol. 3 491
[10] Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N and Heer W A 2006 Science 312 1191
[11] Mao J H, Huang L, Pan Y, Gao M, He J F, Zhou H T, Guo H M, Tian Y, Zou Q, Zhang L Z, Zhang H G, Wang Y L, Du S X, Zhou X J, Neto A H C and Gao H J 2012 Appl. Phys. Lett. 100 093101
[12] Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F and Gao H J 2009 Adv. Mater. 21 2777
[13] Yang W, Chen G R, Shi Z W, Liu C C, Zhang L C, Xie G B, Cheng M, Wang D M, Yang R, Shi D X, Watanabe K J, Taniguchi T, Yao Y G, Zhang Y B and Zhang G Y 2013 Nat. Mater. 12 792
[14] Huang L, Pan Y, Pan L D, Gao M, Xu W X, Que Y D, Zhou H T, Wang Y L, Du S X and Gao H J 2011 Appl. Phys. Lett. 99 162107
[15] Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Roff R S 2009 Science 324 1312
[16] Wang X B, You H J, Liu F M, Li M J, Wan L, Li S Q, Li Q, Xu Y, Tian R, Yu Z Y, Xiang D and Cheng J 2009 Chem. Vapor Deposition 15 53
[17] Pan Y, Gao M, Huang L, Liu F and Gao H J 2009 Appl. Phys. Lett. 95 093106
[18] Yu Q K, Lian J, Siriponglert S, Li H, Chen Y P and Pei S S 2008 Appl. Phys. Lett. 93 113103
[19] Bhaviripudi S, Jia X T, Dresselhaus M S and Kong J 2010 Nano Lett. 10 4128
[20] Gao L B, Ren W C, Zhao J P, Ma L P, Chen Z P and Cheng H M 2010 Appl. Phys. Lett. 97 183109
[21] Wu B, Geng D C, Guo Y L, Huang L P, Xue Y Z, Zheng J, Chen J Y, Yu G, Liu Y Q, Jiang L and Hu W P 2011 Adv. Mater. 23 3522
[22] Li X S, Zhu Y W, Cai W W, Borysiak M, Han B Y, Chen D, Piner R D, Colombo L and Ruoff R S 2009 Nano Lett. 9 4359
[23] Li X S, Cai W W, Colombo L and Ruoff R S 2009 Nano Lett. 9 4268
[24] Ni Z H, Wang H M, Ma Y, Kasim J, Wu Y H and Shen Z X 2008 ACS Nano 2 1033
[25] Berciaud S, Ryu S, Brus L E and Heinz T F 2009 Nano Lett. 9 346
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[3] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[6] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[7] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[8] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[9] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[10] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[11] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[12] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[13] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[14] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[15] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
No Suggested Reading articles found!