Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 096802    DOI: 10.1088/1674-1056/23/9/096802
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Direct growth of graphene on gallium nitride by using chemical vapor deposition without extra catalyst

Zhao Yun (赵云)a b c, Wang Gang (王钢)b c, Yang Huai-Chao (杨怀超)b c, An Tie-Lei (安铁雷)a b, Chen Min-Jiang (陈闽江)b c, Yu Fang (余芳)b c, Tao Li (陶立)b c, Yang Jian-Kun (羊建坤)a, Wei Tong-Bo (魏同波)a, Duan Rui-Fei (段瑞飞)a, Sun Lian-Feng (孙连峰)b
a Semiconductor Lighting Technology Research and Development Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
b National Center for Nanoscience and Technology, Beijing 100190, China;
c University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Graphene on gallium nitride (GaN) will be quite useful when the graphene is used as transparent electrodes to improve the performance of gallium nitride devices. In this work, we report the direct synthesis of graphene on GaN without an extra catalyst by chemical vapor deposition. Raman spectra indicate that the graphene films are uniform and about 5-6 layers in thickness. Meanwhile, the effects of growth temperatures on the growth of graphene films are systematically studied, of which 950℃ is found to be the optimum growth temperature. The sheet resistance of the grown graphene is 41.1 Ω/square, which is close to the lowest sheet resistance of transferred graphene reported. The mechanism of graphene growth on GaN is proposed and discussed in detail. XRD spectra and photoluminescence spectra indicate that the quality of GaN epi-layers will not be affected after the growth of graphene.
Keywords:  graphene      photoluminescence      gallium nitride      chemical vapor deposition      Raman spectroscopy  
Received:  29 December 2013      Revised:  21 March 2014      Accepted manuscript online: 
PACS:  68.65.Pq (Graphene films)  
  78.55.Cr (III-V semiconductors)  
  81.05.ue (Graphene)  
  81.15.Kk (Vapor phase epitaxy; growth from vapor phase)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274040 and 51102226), the National Basic Research Program of China (Grant No. 2011CB301904), the National High Technology Program of China (Grant Nos. 2011AA03A103 and 2011AA03A105), the National Science Foundation of China (Grant Nos. 10774032 and 90921001), and the Key Knowledge Innovation Project of the Chinese Academy of Sciences on Water Science Research, Instrument Developing Project of the Chinese Academy of Sciences (Grant No. Y2010031).
Corresponding Authors:  Duan Rui-Fei, Sun Lian-Feng     E-mail:  duanrf@semi.ac.cn;slf@nanoctr.cn

Cite this article: 

Zhao Yun (赵云), Wang Gang (王钢), Yang Huai-Chao (杨怀超), An Tie-Lei (安铁雷), Chen Min-Jiang (陈闽江), Yu Fang (余芳), Tao Li (陶立), Yang Jian-Kun (羊建坤), Wei Tong-Bo (魏同波), Duan Rui-Fei (段瑞飞), Sun Lian-Feng (孙连峰) Direct growth of graphene on gallium nitride by using chemical vapor deposition without extra catalyst 2014 Chin. Phys. B 23 096802

[1] Chichibu S F, Uedono A, Onuma T, Haskell B A, Chakraborty A, Koyama T, Fini P T, Keller S, Denbaars S P, Speck J S, Mishra U K, Nakamura S, Yamaguchi S, Kamiyama S, Amano H, Akasaki I, Han J and Sota T 2006 Nat. Mater. 5 810
[2] Nakamura S 1998 Science 281 956
[3] Horng R H, Lin S T, Tsai Y L, Chu M T, Liao W Y, Wu M H, Lin R M and Lu Y C 2009 IEEE Electron Dev. Lett. 30 724
[4] Mishra U K, Parikh P and Wu Y F 2002 Proc. IEEE 90 1022
[5] Wang W L, Yang H C and Li G Q 2013 J. Mater. Chem. C 1 4070
[6] Yam F K and Hassan Z 2008 Superlattices and Microstructures 43 1
[7] Wu K, Wei T B, Lan D, Zheng H Y, Wang J X, Luo Y and Li J M 2014 Chin. Phys. B 23 028504
[8] Ellmer K 2012 Nat. Photonics 6 809
[9] Katsnelson M I 2007 Mater. Today 10 20
[10] Kaner J K and Wa R B 2010 Mater. Today 3 52
[11] Edwards R S and Coleman K S 2013 Nanoscale 5 38
[12] Koh W S, Gan C H, Phua W K, Akimov Y A and Bai P 2014 IEEE J. Sel. Top. Quantum Electron. 20 4000107
[13] Lee M S, Lee K, Kim S Y, Lee H, Park J, Choi K H, Kim H K, Kim D G, Lee D Y, Nam S and Park J U 2013 Nano Lett. 13 2814
[14] Wang L C, Zhang Y Y, Li X, Liu Z Q, Guo E Q, Yi X Y, Wang J X, Zhu H W and Wang G H 2012 Appl. Phys. Lett. 101 061102
[15] Zhang Y, Li X, Wang L, Yi X, Wu D, Zhu H and Wang G 2012 Nanoscale 4 5852
[16] Zhang Y T, Dong X, Li G X, Li W C, Zhang B L and Du G T 2013 J. Cryst. Growth 366 35
[17] Kuila T, Bose S, Mishra A K, Khanra P, Kim N H and Lee J H 2012 Prog. Mater. 57 1061
[18] Bae S, Kim S J, Shin D, Ahn J H and Hong B H 2012 Phys. Scr. T146 014024
[19] Zhang Y Y, Wang L C, Li X, Yi X Y, Zhang N, Li J, Zhu H W and Wang G H 2012 J. Appl. Phys. 111 114501
[20] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401
[21] Tao L, Qiu C Y, Yu F, Yang H C, Chen M J, Wang G and Sun L F 2013 J. Phys. Chem. C 117 10079
[22] Qin M M, Ji W, Feng Y Y and Feng W 2014 Chin. Phys. B 23 028103
[23] Calizo I, Bejenari I, Rahman M, Liu G X and Balandin A A 2009 J. Appl. Phys. 106 043509
[24] Gao H, Song L, Guo W, Huang L, Yang D, Wang F, Zuo Y, Fan X, Liu Z, Gao W, Vajtai R, Hackenberg K and Ajayan P M 2012 Carbon 50 4476
[25] Zhou H Q, Qiu C Y, Liu Z, Yang H C, Hu L J, Liu J, Yang H F, Gu C Z and Sun L F 2010 J. Am. Chem. Soc. 132 944
[26] Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S and Kong J 2009 Nano Lett. 9 30
[27] Chuo C C, Lee C M and Chyi J I 2001 Appl. Phys. Lett. 78 314
[28] Chang S J 2012 IEEE J. Sel. Top. Quantum Electron. 8 278
[29] Wang L, Zhang Y, Li X, Liu Z, Guo E, Yi X, Wang J, Zhu H and Wang G 2012 J. Phys. D 45 505102
[30] Bae S, Kim H, Lee Y, Xu X and Park J S 2010 Nat. Nano 5 574
[31] Furtado M and Jacob G 1983 J. Cryst. Growth 64 257
[32] Ding G Q, Zhu Y, Wang S S, Gong Q, Sun L, Wu T R, Xie X M and Jiang M H 2013 Carbon 53 321
[33] Nandamuri G, Roumimov S and Solanki R 2010 Nanotechnology 21 145604
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[3] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[4] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[5] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[6] Review of a direct epitaxial approach to achieving micro-LEDs
Yuefei Cai(蔡月飞), Jie Bai(白洁), and Tao Wang(王涛). Chin. Phys. B, 2023, 32(1): 018508.
[7] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[8] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[9] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[10] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[11] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[12] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[13] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[14] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[15] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
No Suggested Reading articles found!