CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Direct growth of graphene on gallium nitride by using chemical vapor deposition without extra catalyst |
Zhao Yun (赵云)a b c, Wang Gang (王钢)b c, Yang Huai-Chao (杨怀超)b c, An Tie-Lei (安铁雷)a b, Chen Min-Jiang (陈闽江)b c, Yu Fang (余芳)b c, Tao Li (陶立)b c, Yang Jian-Kun (羊建坤)a, Wei Tong-Bo (魏同波)a, Duan Rui-Fei (段瑞飞)a, Sun Lian-Feng (孙连峰)b |
a Semiconductor Lighting Technology Research and Development Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; b National Center for Nanoscience and Technology, Beijing 100190, China; c University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Graphene on gallium nitride (GaN) will be quite useful when the graphene is used as transparent electrodes to improve the performance of gallium nitride devices. In this work, we report the direct synthesis of graphene on GaN without an extra catalyst by chemical vapor deposition. Raman spectra indicate that the graphene films are uniform and about 5-6 layers in thickness. Meanwhile, the effects of growth temperatures on the growth of graphene films are systematically studied, of which 950℃ is found to be the optimum growth temperature. The sheet resistance of the grown graphene is 41.1 Ω/square, which is close to the lowest sheet resistance of transferred graphene reported. The mechanism of graphene growth on GaN is proposed and discussed in detail. XRD spectra and photoluminescence spectra indicate that the quality of GaN epi-layers will not be affected after the growth of graphene.
|
Received: 29 December 2013
Revised: 21 March 2014
Accepted manuscript online:
|
PACS:
|
68.65.Pq
|
(Graphene films)
|
|
78.55.Cr
|
(III-V semiconductors)
|
|
81.05.ue
|
(Graphene)
|
|
81.15.Kk
|
(Vapor phase epitaxy; growth from vapor phase)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274040 and 51102226), the National Basic Research Program of China (Grant No. 2011CB301904), the National High Technology Program of China (Grant Nos. 2011AA03A103 and 2011AA03A105), the National Science Foundation of China (Grant Nos. 10774032 and 90921001), and the Key Knowledge Innovation Project of the Chinese Academy of Sciences on Water Science Research, Instrument Developing Project of the Chinese Academy of Sciences (Grant No. Y2010031). |
Corresponding Authors:
Duan Rui-Fei, Sun Lian-Feng
E-mail: duanrf@semi.ac.cn;slf@nanoctr.cn
|
Cite this article:
Zhao Yun (赵云), Wang Gang (王钢), Yang Huai-Chao (杨怀超), An Tie-Lei (安铁雷), Chen Min-Jiang (陈闽江), Yu Fang (余芳), Tao Li (陶立), Yang Jian-Kun (羊建坤), Wei Tong-Bo (魏同波), Duan Rui-Fei (段瑞飞), Sun Lian-Feng (孙连峰) Direct growth of graphene on gallium nitride by using chemical vapor deposition without extra catalyst 2014 Chin. Phys. B 23 096802
|
[1] |
Chichibu S F, Uedono A, Onuma T, Haskell B A, Chakraborty A, Koyama T, Fini P T, Keller S, Denbaars S P, Speck J S, Mishra U K, Nakamura S, Yamaguchi S, Kamiyama S, Amano H, Akasaki I, Han J and Sota T 2006 Nat. Mater. 5 810
|
[2] |
Nakamura S 1998 Science 281 956
|
[3] |
Horng R H, Lin S T, Tsai Y L, Chu M T, Liao W Y, Wu M H, Lin R M and Lu Y C 2009 IEEE Electron Dev. Lett. 30 724
|
[4] |
Mishra U K, Parikh P and Wu Y F 2002 Proc. IEEE 90 1022
|
[5] |
Wang W L, Yang H C and Li G Q 2013 J. Mater. Chem. C 1 4070
|
[6] |
Yam F K and Hassan Z 2008 Superlattices and Microstructures 43 1
|
[7] |
Wu K, Wei T B, Lan D, Zheng H Y, Wang J X, Luo Y and Li J M 2014 Chin. Phys. B 23 028504
|
[8] |
Ellmer K 2012 Nat. Photonics 6 809
|
[9] |
Katsnelson M I 2007 Mater. Today 10 20
|
[10] |
Kaner J K and Wa R B 2010 Mater. Today 3 52
|
[11] |
Edwards R S and Coleman K S 2013 Nanoscale 5 38
|
[12] |
Koh W S, Gan C H, Phua W K, Akimov Y A and Bai P 2014 IEEE J. Sel. Top. Quantum Electron. 20 4000107
|
[13] |
Lee M S, Lee K, Kim S Y, Lee H, Park J, Choi K H, Kim H K, Kim D G, Lee D Y, Nam S and Park J U 2013 Nano Lett. 13 2814
|
[14] |
Wang L C, Zhang Y Y, Li X, Liu Z Q, Guo E Q, Yi X Y, Wang J X, Zhu H W and Wang G H 2012 Appl. Phys. Lett. 101 061102
|
[15] |
Zhang Y, Li X, Wang L, Yi X, Wu D, Zhu H and Wang G 2012 Nanoscale 4 5852
|
[16] |
Zhang Y T, Dong X, Li G X, Li W C, Zhang B L and Du G T 2013 J. Cryst. Growth 366 35
|
[17] |
Kuila T, Bose S, Mishra A K, Khanra P, Kim N H and Lee J H 2012 Prog. Mater. 57 1061
|
[18] |
Bae S, Kim S J, Shin D, Ahn J H and Hong B H 2012 Phys. Scr. T146 014024
|
[19] |
Zhang Y Y, Wang L C, Li X, Yi X Y, Zhang N, Li J, Zhu H W and Wang G H 2012 J. Appl. Phys. 111 114501
|
[20] |
Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401
|
[21] |
Tao L, Qiu C Y, Yu F, Yang H C, Chen M J, Wang G and Sun L F 2013 J. Phys. Chem. C 117 10079
|
[22] |
Qin M M, Ji W, Feng Y Y and Feng W 2014 Chin. Phys. B 23 028103
|
[23] |
Calizo I, Bejenari I, Rahman M, Liu G X and Balandin A A 2009 J. Appl. Phys. 106 043509
|
[24] |
Gao H, Song L, Guo W, Huang L, Yang D, Wang F, Zuo Y, Fan X, Liu Z, Gao W, Vajtai R, Hackenberg K and Ajayan P M 2012 Carbon 50 4476
|
[25] |
Zhou H Q, Qiu C Y, Liu Z, Yang H C, Hu L J, Liu J, Yang H F, Gu C Z and Sun L F 2010 J. Am. Chem. Soc. 132 944
|
[26] |
Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S and Kong J 2009 Nano Lett. 9 30
|
[27] |
Chuo C C, Lee C M and Chyi J I 2001 Appl. Phys. Lett. 78 314
|
[28] |
Chang S J 2012 IEEE J. Sel. Top. Quantum Electron. 8 278
|
[29] |
Wang L, Zhang Y, Li X, Liu Z, Guo E, Yi X, Wang J, Zhu H and Wang G 2012 J. Phys. D 45 505102
|
[30] |
Bae S, Kim H, Lee Y, Xu X and Park J S 2010 Nat. Nano 5 574
|
[31] |
Furtado M and Jacob G 1983 J. Cryst. Growth 64 257
|
[32] |
Ding G Q, Zhu Y, Wang S S, Gong Q, Sun L, Wu T R, Xie X M and Jiang M H 2013 Carbon 53 321
|
[33] |
Nandamuri G, Roumimov S and Solanki R 2010 Nanotechnology 21 145604
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|