CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Characterization of deep acceptor level in as-grown ZnO thin film by molecular beam epitaxy |
M. Asghara, K. Mahmooda, M. A. Hasanb, I. T. Fergusonb, R. Tsub, M. Willderc |
a Department of Physics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan; b Department of Electrical and Computer Engineering, University of North Carolina Charlotte, NC 28223, USA; c Department of Science and Technology, Linköping University Norrköping, Sweden |
|
|
Abstract We report deep level transient spectroscopy results from ZnO layers grown on silicon by molecular beam epitaxy (MBE). The hot probe measurements reveal mixed conductivity in the as-grown ZnO layers, and the current-voltage (I-V) measurements demonstrate a good quality p-type Schottky device. A new deep acceptor level is observed in the ZnO layer having activation energy of 0.49± 0.03 eV and capture cross-section of 8.57×10-18 cm2. Based on the results from Raman spectroscopy, photoluminescence, and secondary ion mass spectroscopy (SIMS) of the ZnO layer, the observed acceptor trap level is tentatively attributed to a nitrogen-zinc vacancy complex in ZnO.
|
Received: 21 January 2014
Revised: 23 February 2014
Accepted manuscript online:
|
PACS:
|
71.20.Nr
|
(Semiconductor compounds)
|
|
71.55.Gs
|
(II-VI semiconductors)
|
|
73.20.Hb
|
(Impurity and defect levels; energy states of adsorbed species)
|
|
73.30.+y
|
(Surface double layers, Schottky barriers, and work functions)
|
|
Fund: Project supported by Fulbright-USA and UNC-Charlotte. |
Corresponding Authors:
M. Asghar
E-mail: mhashmi@iub.edu.pk
|
Cite this article:
M. Asghar, K. Mahmood, M. A. Hasan, I. T. Ferguson, R. Tsu, M. Willder Characterization of deep acceptor level in as-grown ZnO thin film by molecular beam epitaxy 2014 Chin. Phys. B 23 097101
|
[1] |
Qiang M, Teguh Endah S, Akihisa O and Masaaki N 2011 Appl. Phys. Lett. 98 051908
|
[2] |
Muhammad A, Khalid M, Ian F, Yasin A Raja, Ya-Hong X, Raphale T and M-Ali H 2013 Semicond. Sci. Technol. 28 105019
|
[3] |
Wang L M, Chiam S Y, Huang J Q, Wang S J, Pan J S and Chim W K 2011 Appl. Phys. Lett. 98 022106
|
[4] |
Sang Wuk L, Hak Dong C, Gennady P and Won T 2011 Appl. Phys. Lett. 98 093110
|
[5] |
Sushant G, Purushottam K, Arul C A, Doina C and Singh R K 2011 Appl. Surf. Sci. 257 5837
|
[6] |
Ying C and Fabien B 2010 Appl. Phys. Lett. 97 042108
|
[7] |
Dongqi Y, Lizhong H, Shuangshuang Q, Heqiu Z, Song-En Andy L, Len L K, Qiang F, Xi C and Kaitong S 2009 J. Phys. D: Appl. Phys. 42 055110
|
[8] |
Pan X H, Jiang J, Zeng Y J, He H P, Zhu L P, Ye Z Z, Zhao B H and Pan X Q 2008 J. Appl. Phys. 103 023708
|
[9] |
Qin J M, Yao B, Yan Y, Zhang J Y, Jia X P, Zhang Z Z, Li B H, Shan C X and Shen D Z 2009 Appl. Phys. Lett. 95 022101
|
[10] |
Lyons J L, Anderson J and Cress V W 2009 Appl. Phys. Lett. 95 252105
|
[11] |
Tarun M C, Zafar I and McCluskey M D 2011 AIP Advances 1 022105
|
[12] |
Park C H, Zhang S B and Wei S H 2002 Phys. Rev. B 66 073202
|
[13] |
Jiangbo L, Su-Huai W, Su-Shen L and Jian-Bi X 2006 Phys. Rev. B 74 081201
|
[14] |
Lei L, Jilian X, Dandan W, Mingming J, Shuangpeng W, Binghui L, Zhenzhong Z, Dongxu Z, Chong-Xin S, Bin Y and Shen D Z 2012 Phys. Rev. Lett. 108 215501
|
[15] |
Reynolds J G, Reynolds C L, Mohanta Jr. A, Muth J F, Rowe J E, Everitt H O and Aspnes D E 2013 Appl. Phys. Lett. 102 152114
|
[16] |
Reshchikov M A, Xie J Q, Hertog B and Osinsky A 2008 J. Appl. Phys. 103 103514
|
[17] |
Pierre M, Dimitri T, Christian M and Jean-Michel C 2012 Appl. Phys. Lett. 101 122104
|
[18] |
Sadia F, Hadia N, Muhammad A, Willander M and Qamur W 2009 Adv. Mater. Research 79-82 1317
|
[19] |
Aydogan S, Cinar K, Asıl C H, Kun C C and Türüt A 2009 J. Alloy. Comp. 476 913
|
[20] |
Auret F D, Goodman S A, Hayes M, Legodi M J, Van Laarhoven H A and Look D C 2001 Appl. Phys. Lett. 79 3074
|
[21] |
Lang D V 1974 J. Appl. Phys. 45 3014
|
[22] |
Fumiyasu O, Minseok C, Atsushi T and Isao T 2011 Sci. Technol. Adv. Mater. 12 034302
|
[23] |
Soumen D and Giri P K 2012 Thin Solid Films 520 5000
|
[24] |
Kennedy J, Carder D A, Markwitz A and Reeves R J 2010 J. Appl. Phys. 107 103518
|
[25] |
Ke Yue W, Qing Qing F, Wei Na W, Chang Z, Wen Juan H, Jin Guang L, Qing Rong L, Yan Mei L, Qi Ping Z and Hang Ming Z 2010 J. Appl. Phys. 108 063530
|
[26] |
Felic F, Gluba M A and Nickel N H 2009 Appl. Phys. Lett. 95 141903
|
[27] |
Changzheng W, Zhong C, Haiquan H and Dong Z 2009 Physica B 404 4075
|
[28] |
Muhammad A, Khalid M, Adnan A, M-Ali H, Yasin A R, Ijaz H and Willander M 2011 ECS Trans. 35 149
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|