Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 086401    DOI: 10.1088/1674-1056/23/8/086401
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Decline of nucleation in the heating process with a high heating rate

Yang Gao-Lin (杨高林), Lin Xin (林鑫), Song Meng-Hua (宋梦华), Hu Qiao (胡桥), Wang Zhi-Tai (汪志太), Huang Wei-Dong (黄卫东)
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  The effect of the heating rate on the nucleation of metallic glass in a rapid heating process starting from the glass transition temperature is investigated. The critical nucleus radius increases with the increase of the temperature of the undercooling liquid. If the increment rate of the critical nucleus radius, owing to the heating process, is higher than the growth rate of the nuclei, the nuclei generated at the low temperature will become the embryos at the high temperature. This means that the high heating rate can make no nucleation happen in the heating process. In consideration of the interfacial energy, the growth rate of the nuclei increases with the increase of their size and the growth rate of the critical nucleus is zero. Thus, the lower heating rate can also make the nuclei decline partially. Finally, this theory is used to analyze the nucleation process during laser remelting metallic glass.
Keywords:  nucleation      growth rate      heating rate      bulk metallic glass  
Received:  09 October 2013      Revised:  25 February 2014      Accepted manuscript online: 
PACS:  64.60.qj (Studies of nucleation in specific substances)  
  81.10.Jt (Growth from solid phases (including multiphase diffusion and recrystallization))  
  81.05.Kf (Glasses (including metallic glasses))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 50971102), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20116102110016), the National Basic Research Program of China (Grant No. 2011CB610402), and the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University, China (Grant No. SKLSP201306).
Corresponding Authors:  Lin Xin     E-mail:  xlin@nwpu.edu.cn

Cite this article: 

Yang Gao-Lin (杨高林), Lin Xin (林鑫), Song Meng-Hua (宋梦华), Hu Qiao (胡桥), Wang Zhi-Tai (汪志太), Huang Wei-Dong (黄卫东) Decline of nucleation in the heating process with a high heating rate 2014 Chin. Phys. B 23 086401

[1] Liu F, Sommer F, Bos C and Mittemeijer E J 2007 Int. Mater. Rev. 52 193
[2] Ren F, Hao Z, Hu J, Zhang C and Luo Y 2010 Chin. Phys. B 19 116801
[3] Zhang J, Hu S, Zhang J and Hao Y 2011 Chin. Phys. B 20 057801
[4] Wang G, Liang K, Liu W and Zhou F 2004 Acta Phys Sin. 53 3966 (in Chinese)
[5] Kelton K F 1991 Solid State Phys. 45 75
[6] Fisher J C, Hollomon J H and Turnbull D 1948 J. Appl. Phys. 19 775
[7] Spaepen F 1975 Acta Metall. 23 729
[8] Turnbull D and Fisher J C 1949 J. Chem. Phys. 17 71
[9] Liu F, Sommer F and Mittemeijer E J 2004 J. Mater. Sci. 39 1621
[10] Yang C, Gao J, Zhang Y K, Kolbe M and Herlach D M 2011 Acta Mater. 59 3915
[11] Saida J, Matsushita M and Inoue A 2002 J. Non-crystal Solids 312-314 617
[12] Schroers J and Johnson W L 2000 J. Appl. Phys. 88 44
[13] Yang G, Lin X, Liu F, Hu Q, Ma L, Li J and Huang W 2012 Intermetallics 22 110
[1] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[2] A study of cavitation nucleation in pure water using molecular dynamics simulation
Hua Xie(谢华), Yuequn Xu(徐跃群), and Cheng Zhong(钟成). Chin. Phys. B, 2022, 31(11): 114701.
[3] Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties
Zhen-Hua Li(李振华), Peng-Fei Shao(邵鹏飞), Gen-Jun Shi(施根俊), Yao-Zheng Wu(吴耀政), Zheng-Peng Wang(汪正鹏), Si-Qi Li(李思琦), Dong-Qi Zhang(张东祺), Tao Tao(陶涛), Qing-Jun Xu(徐庆君), Zi-Li Xie(谢自力), Jian-Dong Ye(叶建东), Dun-Jun Chen(陈敦军), Bin Liu(刘斌), Ke Wang(王科), You-Dou Zheng(郑有炓), and Rong Zhang(张荣). Chin. Phys. B, 2022, 31(1): 018102.
[4] Suppression of ice nucleation in supercooled water under temperature gradients
Li-Ping Wang(王利平), Wei-Liang Kong(孔维梁), Pei-Xiang Bian(边佩翔), Fu-Xin Wang(王福新), and Hong Liu(刘洪). Chin. Phys. B, 2021, 30(6): 068203.
[5] Multibeam Raman amplification of a finite-duration seed in a short distance
Y G Chen(陈雨谷), Y Chen(陈勇), S X Xie(谢善秀), N Peng(彭娜), J Q Yu(余金清), and C Z Xiao(肖成卓). Chin. Phys. B, 2021, 30(10): 105202.
[6] Role of Ag microalloying on glass forming ability and crystallization kinetics of ZrCoAgAlNi amorphous alloy
A Surendar, K Geetha, C Rajan, and M Alaazim. Chin. Phys. B, 2021, 30(1): 017201.
[7] Surface active agents stabilize nanodroplets and enhance haze formation
Yunqing Ma(马韵箐), Changsheng Chen(陈昌盛), and Xianren Zhang(张现仁). Chin. Phys. B, 2021, 30(1): 010504.
[8] Tests of the real-time vertical growth rate calculation on EAST
Na-Na Bao(鲍娜娜), Yao Huang(黄耀), Jayson Barr, Zheng-Ping Luo(罗正平), Yue-Hang Wang(汪悦航), Shu-Liang Chen(陈树亮), Bing-Jia Xiao(肖炳甲), David Humphreys. Chin. Phys. B, 2020, 29(6): 065204.
[9] Molecular beam epitaxial growth of high quality InAs/GaAs quantum dots for 1.3-μ quantum dot lasers
Hui-Ming Hao(郝慧明), Xiang-Bin Su(苏向斌), Jing Zhang(张静), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(7): 078104.
[10] Nucleation mechanism and morphology evolution of MoS2 flakes grown by chemical vapor deposition
He-Ju Xu(许贺菊), Jian-Song Mi(米建松), Yun Li(李云), Bin Zhang(张彬), Ri-Dong Cong(丛日东), Guang-Sheng Fu(傅广生), Wei Yu(于威). Chin. Phys. B, 2017, 26(12): 128102.
[11] A diffusion model for solute atoms diffusing and aggregating in nuclear structural materials
Quan Song(宋泉), Fan-Xin Meng(孟繁新), Bo-Yuan Ning(宁博元), Jun Zhuang(庄军), Xi-Jing Ning(宁西京). Chin. Phys. B, 2017, 26(12): 126601.
[12] Studies on the nucleation of MBE grown III-nitride nanowires on Si
Yanxiong E(鄂炎雄), Zhibiao Hao(郝智彪), Jiadong Yu(余佳东), Chao Wu(吴超), Lai Wang(汪莱), Bing Xiong(熊兵), Jian Wang(王健), Yanjun Han(韩彦军), Changzheng Sun(孙长征), Yi Luo(罗毅). Chin. Phys. B, 2017, 26(1): 016103.
[13] LaGa-based bulk metallic glasses
Lin-Zhi Zhao(赵林志), Rong-Jie Xue(薛荣洁), Wei-Hua Wang(汪卫华), Hai-Yang Bai(白海洋). Chin. Phys. B, 2017, 26(1): 018106.
[14] Amorphous phase formation rules in high-entropy alloys
Qiu-Wei Xing(邢秋玮), Yong Zhang(张勇). Chin. Phys. B, 2017, 26(1): 018104.
[15] Can secondary nucleation exist in ice banding of freezing colloidal suspensions?
Jia-Xue You(游家学), Jin-Cheng Wang(王锦程), Li-Lin Wang(王理林), Zhi-Jun Wang(王志军), Jun-Jie Li(李俊杰), Xin Lin(林鑫). Chin. Phys. B, 2016, 25(12): 128202.
No Suggested Reading articles found!