Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 016103    DOI: 10.1088/1674-1056/26/1/016103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Studies on the nucleation of MBE grown III-nitride nanowires on Si

Yanxiong E(鄂炎雄), Zhibiao Hao(郝智彪), Jiadong Yu(余佳东), Chao Wu(吴超), Lai Wang(汪莱), Bing Xiong(熊兵), Jian Wang(王健), Yanjun Han(韩彦军), Changzheng Sun(孙长征), Yi Luo(罗毅)
Tsinghua National Laboratory for Information Science and Technology, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
Abstract  GaN and AlN nanowires (NWs) have attracted great interests for the fabrication of novel nano-sized devices. In this paper, the nucleation processes of GaN and AlN NWs grown on Si substrates by molecular beam epitaxy (MBE) are investigated. It is found that GaN NWs nucleated on in-situ formed Si3N4 fully release the stress upon the interface between GaN NW and amorphous Si3N4 layer, while AlN NWs nucleated by aluminization process gradually release the stress during growth. Depending on the strain status as well as the migration ability of III group adatoms, the different growth kinetics of GaN and AlN NWs result in different NW morphologies, i.e., GaN NWs with uniform radii and AlN NWs with tapered bases.
Keywords:  GaN nanowires      AlN nanowires      strain      nucleation  
Received:  03 February 2016      Revised:  10 September 2016      Accepted manuscript online: 
PACS:  61.46.Km (Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))  
  61.72.Hh (Indirect evidence of dislocations and other defects (resistivity, slip, creep, strains, internal friction, EPR, NMR, etc.))  
  64.60.Q- (Nucleation)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB632804), the National Natural Science Foundation of China (Grant Nos. 61176015, 61176059, 61210014, 61321004, and 61307024), and the High Technology Research and Development Program of China (Grant No. 2012AA050601).
Corresponding Authors:  Zhibiao Hao     E-mail:  zbhao@tsinghua.edu.cn

Cite this article: 

Yanxiong E(鄂炎雄), Zhibiao Hao(郝智彪), Jiadong Yu(余佳东), Chao Wu(吴超), Lai Wang(汪莱), Bing Xiong(熊兵), Jian Wang(王健), Yanjun Han(韩彦军), Changzheng Sun(孙长征), Yi Luo(罗毅) Studies on the nucleation of MBE grown III-nitride nanowires on Si 2017 Chin. Phys. B 26 016103

[1] Lu Y J, Kim J, Chen H Y, Wu C, Dabidian N, Sanders C E, Wang C Y, Lu M Y, Li B H, Qiu X, Chang W H, Chen L J, Shvets G, Shih C K and Gwo S 2012 Science 337 450
[2] Wang D, Pierre A, Kibria M G, Cui K, Han X, Bevan K H, Guo H, Paradis S, Hakima A R and Mi Z 2011 Nano Lett. 11 2353
[3] Maier K, Heiwig A, Müller G, Becker P, Hille P, Schörmann J, Teubert J and Eickoff M 2014 Sensors and Actuators B 197 87
[4] Holmes H J, Choi K, Kako S, Arita M and Arakawa Y 2014 Nano Lett. 14 982
[5] Consonni V, Hanke M, Knelangen M, Geelhaar L, Trampert A and Riechert H 2011 Phys. Rev. B 83
[6] Consonni V, Knelangen M, Geelhaar L, Trampert A and Riechert H 2010 Phys. Rev. B 81
[7] Landre O, Bougerol C, Renevier H and Daudin B 2009 Nanotechnology 20 415602
[8] Hu J N, Hao Z B, Niu L, E Y X, Wang L and Luo Y 2013 Appl. Phys. Lett. 102 141913
[9] Hestroffer K, Leclere C, Cantelli V, Bougerol C, Renevier H and Daudin B 2012 Appl. Phys. Lett. 100 212107
[10] Ahn H, Wu C L, Gwo S, Wei C M and Chou Y C 2001 Phys. Rev. Lett. 86 2818
[11] Carlton C E and Ferreira P J 2009 Microsc Microanal 15 736
[12] Kuball M 2001 Surface and Interface Analysis 31 987
[13] E Y, Hao Z, Yu J, Wu C, Liu R, Wang L, Xiong B, Wang J, Han Y, Sun C and Luo Y 2015 Nanoscale Res. Lett. 10 383
[14] Zhong F, Li X H, Qiu K, Yin Z J, Ji C J, Cao X C, Han Q F, Chen J R and Wang Y Q 2007 Chin. Phys. 16 2786
[15] Gotschke T, Schumann T, Limbach F, Stoica T and Calarco R 2011 Appl. Phys. Lett. 98 103102
[16] Banal R G, Funato M and Kawakami Y 2009 Phys. Status Solidi (c) 6 599
[17] Auzelle T, Haas B, Minj A, Bougerol C, Rouviére J L, Cros A, Colchero J and Daudin B 2015 J. Appl. Phys. 117 245303
[18] Schulli T U, Vastola G, Richard M I, Malachias A, Renand G, Uhlik F, Montalenti F, Chen G, Miglio L, Schaffler F and Bauer G 2009 Phys. Rev. Lett. 102 025502
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[3] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[4] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[5] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[6] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[9] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[10] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[11] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[12] Accurate theoretical evaluation of strain energy of all-carboatomic ring (cyclo[2n]carbon), boron nitride ring, and cyclic polyacetylene
Tian Lu(卢天), Zeyu Liu(刘泽玉), and Qinxue Chen(陈沁雪). Chin. Phys. B, 2022, 31(12): 126101.
[13] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
[14] Strain-modulated anisotropic Andreev reflection in a graphene-based superconducting junction
Xingfei Zhou(周兴飞), Ziming Xu (许子铭), Deliang Cao(曹德亮), and Fenghua Qi(戚凤华). Chin. Phys. B, 2022, 31(11): 117403.
[15] A study of cavitation nucleation in pure water using molecular dynamics simulation
Hua Xie(谢华), Yuequn Xu(徐跃群), and Cheng Zhong(钟成). Chin. Phys. B, 2022, 31(11): 114701.
No Suggested Reading articles found!