CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Study on lattice vibrational properties and Raman spectra of Bi2Te3 based on density-functional perturbation theory |
Feng Song-Ke (冯松科), Li Shuang-Ming (李双明), Fu Heng-Zhi (傅恒志) |
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University (NPU), Xi'an 710072, China |
|
|
Abstract We present a variational density-functional perturbation theory (DFPT) to investigate the lattice dynamics and vibrational properties of single crystal bismuth telluride material. The phonon dispersion curves and phonon density of states (DOS) of the material were obtained. The phonon dispersions are divided into two fields by a phonon gap. In the lower field, atomic vibrations of both Bi and Te contribute to the DOS. In the higher field, most contributions come from Te atoms. The calculated Born effective charges and dielectric constants reveal a great anisotropy in the crystal. The largest Born effective charge generates a significant dynamic charge transferring along the c axis. By DFPT calculation, the greatest LO-TO splitting takes place in the infrared phonon modes and reaches 1.7 THz in the Brillouin zone center. The Raman spectra and peaks corresponding to respective atomic vibration modes were found to be in good agreement with the experimental data.
|
Received: 08 August 2013
Revised: 02 April 2014
Accepted manuscript online:
|
PACS:
|
63.20.-e
|
(Phonons in crystal lattices)
|
|
63.20.D-
|
(Phonon states and bands, normal modes, and phonon dispersion)
|
|
63.20.dk
|
(First-principles theory)
|
|
78.30.-j
|
(Infrared and Raman spectra)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50971101 and 51074127) and the Research Fund of the State Key Laboratory of Solidification Processing (NPU) of China (Grant No. SKLSP201010). |
Corresponding Authors:
Li Shuang-Ming
E-mail: lsm@nwpu.edu.cn
|
Cite this article:
Feng Song-Ke (冯松科), Li Shuang-Ming (李双明), Fu Heng-Zhi (傅恒志) Study on lattice vibrational properties and Raman spectra of Bi2Te3 based on density-functional perturbation theory 2014 Chin. Phys. B 23 086301
|
[1] |
Moore J 2009 Nat. Phys. 5 378
|
[2] |
Ning W, Du H F, Kong F Y, Yang J Y, Han Y Y, Tian M L and Zhang Y H 2013 Sci. Rep. 3 1
|
[3] |
Zhang C, Sun L, Chen Z Y, Zhou X J, Wu Q, Yi W, Guo J, Dong X L and Zhao Z X 2011 Phys. Rev. B 83 140504
|
[4] |
Mehta R J, Zhang Y L, Karthik C, Singh B, Siegel R W, Borca-Tasciuc T and Ramanath G. 2012 Nat. Mater. 11 233
|
[5] |
Satterthwaite C B and Ure R W 1957 Phys. Rev. 108 1164
|
[6] |
Goldsmid H J 1961 J. Appl. Phys. 32 2198
|
[7] |
Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
|
[8] |
Nassary M M, Shaban H T and El-Sadek M S 2009 Mater. Chem. Phys. 113 385
|
[9] |
Goldsmid H J 1958 Proc. Phys. Soc. 72 17
|
[10] |
Teweldebrhan D, Goyal V, Rahman M and Balandin A 2010 Appl. Phys. Lett. 96 053107
|
[11] |
Shahil K M F, Hossain M Z, Teweldebrhan D and Balandin A A 2010 Appl. Phys. Lett. 96 153103
|
[12] |
Teweldebrhan D, Goyal V and Balandin A 2010 Nano Lett. 10 1209
|
[13] |
Wang G F and Cagin T 2007 Phys. Rev. B 76 075201
|
[14] |
Richter W and Becker C R 1977 Phys. Status Solidi B 84 619
|
[15] |
Bessas D, Sergueev I, Whille H C, Perbon J, Ebling D and Hermann R P 2012 Phys. Rev. B 86 224301
|
[16] |
Hashibon A and Elsässer C 2011 Phys. Rev. B 84 144117
|
[17] |
Rowe D M 1995 CRC Handbook of Thermoelectrics (Florida: CRC Press) Chap, 9, pp. 8-12
|
[18] |
Kullmann W, Eichhorn G, Rauh H, Geick R, Eckold G and Steigenberger U 1990 Phys. Status Solidi 162 125
|
[19] |
Wagner V, Dolling G, Powell B M and Landweher G 1978 Phys. Status Solidi 85 311
|
[20] |
Jenkins J O, Rayne J A and Ure R W J 1972 Phys. Rev. B 5 3171
|
[21] |
Qiu B and Ruan X L 2009 Phys. Rev. B 80 165203
|
[22] |
Gonze X and Lee C 1997 Phys. Rev. B 55 10355
|
[23] |
Baroni S, De G S, Dal C A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
|
[24] |
Zhou B, Qing S and He D Y 2009 Chin. Phys. B 18 4988
|
[25] |
Liu B, Gu M, Liu X L, Huang S M, Ni C, Li Z R and Wang R B 2010 Chin. Phys. B 19 26301
|
[26] |
Miao L, Liu H J, Hu Y, Zhou X, Hu C Z and Shi J 2010 Chin. Phys. B 19 16301
|
[27] |
Taylor R E, Leung B, Lake M P and Bouchard L S 2012 J. Phys. Chem. C 116 17300
|
[28] |
Segall M D, Philip J D L, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
|
[29] |
Medlin D L, Ramasse Q M, Spataru C D and Yang N Y C 2010 J. Appl. Phys. 108 043517
|
[30] |
Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
|
[31] |
Pfrommer B G, Côté M, Louie S G and Cohen M L 1997 J. Comput. Phys. 131 233
|
[32] |
Wirtz L and Rubio A 2004 Solid State Commun. 131 141
|
[33] |
Sklyadneva I Y, Heid R, Bohnen K P, Chis V, Volodin V A, Kokh K A, Tereshchenko O E, Echenique P M and Chulkov E V 2012 Phys. Rev. B 86 094302
|
[34] |
Rauh H, Geick R, Kohler H, Nucker N and Lehner N 1981 J. Phys. C: Solid State Phys. 14 2705
|
[35] |
Goldsmid H J 2009 Introduction to Thermoelectricity (Heidelberg: Springer) p. 70
|
[36] |
Chernatynskiy A and Phillpot S R 2013 Curr. Opin. Solid State Mater. Sci. 17 1
|
[37] |
Broido D A, Malorny M, Birner G, Mingo N and Stewart D A 2007 Appl. Phys. Lett. 91 231922
|
[38] |
Nguyen H P, Wu M X, Su J, Vullers R J M, Vereecken P M and Fransaer J 2012 Electrochim. Acta 68 9
|
[39] |
Kullmann W, Geurts J, Richter W, Lehner N, Rauh H, Steigenberger U, Eichhorn G and Geick R 1984 Phys. Status Solidi B 125 131
|
[40] |
Chen G, Zeng T, Borca T T and Song D 2000 Mater. Sci. Eng. A 292 155
|
[41] |
Koh Y K and Cahill D G 2007 Phys. Rev. B 76 075207
|
[42] |
Minnich A J, Dresselhaus M S, Ren Z F and Chen G 2009 Energ. Environ. Sci. 2 466
|
[43] |
Jacquot A, Bayer B, Winkler M, Böttner H and Jaegle M 2012 J. Solid State Chem. 193 105
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|