Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 028202    DOI: 10.1088/1674-1056/aca202
RAPID COMMUNICATION Prev   Next  

Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation

Xuanhao Fu(傅宣豪) and Xin Zhou(周昕)
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  The freezing of water is one of the most common processes in nature and affects many aspects of human activity. Ice nucleation is a crucial part of the freezing process and usually occurs on material surfaces. There is still a lack of clear physical pictures about the central question how various features of material surfaces affect their capability in facilitating ice nucleation. Via molecular dynamics simulations, here we show that the detailed features of surfaces, such as atomic arrangements, lattice parameters, hydrophobicity, and function forms of surfaces' interaction to water molecules, generally affect the ice nucleation through the average adsorption energy per unit-area surfaces to individual water molecules, when the lattice of surfaces mismatches that of ice. However, for the surfaces whose lattice matches ice, even the detailed function form of the surfaces' interaction to water molecules can largely regulate the icing ability of these surfaces. This study provides new insights into understanding the diverse relationship between various microscopic features of different material surfaces and their nucleation efficacy.
Keywords:  ice nucleation      molecular simulations      lattice match      hydrophilicity  
Received:  08 October 2022      Revised:  28 October 2022      Accepted manuscript online:  11 November 2022
PACS:  82.60.Nh (Thermodynamics of nucleation)  
  64.60.qe (General theory and computer simulations of nucleation)  
  64.70.D- (Solid-liquid transitions)  
  68.35.Rh (Phase transitions and critical phenomena)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12174388).
Corresponding Authors:  Xin Zhou     E-mail:  xzhou@ucas.ac.cn

Cite this article: 

Xuanhao Fu(傅宣豪) and Xin Zhou(周昕) Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation 2023 Chin. Phys. B 32 028202

[1] Sosso G C, Chen J, Cox S J, Fitzner M, Pedevilla P, Zen A and Michaelides A 2016 Chem. Rev. 116 7078
[2] Zhang Z and Liu X Y 2018 Chem. Soc. Rev. 47 7116
[3] Lupi L and Molinero V 2014 J. Phys. Chem. A 118 7330
[4] Lupi L, Hudait A and Molinero V 2014 J. Am. Chem. Soc. 136 3156
[5] Whale T F, Rosillo-Lopez M, Murray B J and Salzmann C G 2015 J. Phys. Chem. Lett. 6 3012
[6] Bai G, Gao D, Liu Z, Zhou X and Wang J 2019 Nature 576 437
[7] Häusler T, Gebhardt P, Iglesias D, Rameshan C, Marchesan S, Eder D and Grothe H 2018 J. Phys. Chem. C 122 8182
[8] Sosso G C, Li T, Donadio D, Tribello G A and Michaelides A 2016 J. Phys. Chem. Lett. 7 2350
[9] Sosso G C, Tribello G A, Zen A, Pedevilla P and Michaelides A 2016 J. Chem. Phys. 145 211927
[10] Kiselev A, Bachmann F, Pedevilla P, Cox S J, Michaelides A, Gerthsen D and Leisner T 2017 Science 355 367
[11] Atkinson J D, Murray B J, Woodhouse M T, Whale T F, Baustian K J, Carslaw K S, Dobbie S, O'Sullivan D and Malkin T L 2013 Nature 498 355
[12] Cox S J, Kathmann S M, Purton J A, Gillan M J and Michaelides A 2012 Phys. Chem. Chem. Phys. 14 7944
[13] Feibelman P J 2008 Phys. Chem. Chem. Phys. 10 4688
[14] Hu X L and Michaelides A 2007 Surf. Sci. 601 5378
[15] Qiu Y, Odendahl N, Hudait A, Mason R, Bertram A K, Paesani F, DeMott P J and Molinero V 2017 J. Am. Chem. Soc. 139 3052
[16] Toth G I, Tegze G, Pusztai T and Granasy L 2012 Phys. Rev. Lett. 108 025502
[17] Zheng C, Lu H, Xu Q, Liu T, Patil A, Wu J, de Vries R, Zuilhof H and Zhang Z 2021 Crystals 11 1134
[18] Lupi L, Peters B and Molinero V 2016 J. Chem. Phys. 145 211910
[19] Lukas M, Schwidetzky R, Kunert A T, Backus E H G, Pöschl U, Fröhlich-Nowoisky J, Bonn M and Meister K 2021 J. Phys. Chem. Lett. 12 218
[20] Shao M, Zhang C, Qi C, Wang C, Wang J, Ye F and Zhou X 2020 Phys. Chem. Chem. Phys. 22 258
[21] Glatz B and Sarupria S 2018 Langmuir 34 1190
[22] Abdelmonem A, Backus E H G, Hoffmann N, Sánchez M A, Cyran J D, Kiselev A and Bonn M 2017 Atmospheric Chem. Phys. 17 7827
[23] Bi Y, Cao B and Li T 2017 Nat. Commun. 8 15372
[24] Li C, Tao R, Luo S, Gao X, Zhang K and Li Z 2018 J. Phys. Chem. C 122 25992
[25] Zhang C, Wang Y, Wang J and Zhou X 2022 J. Phys. Chem. C 126 13373
[26] Xu Q, Wang H, Wu J and Zhang Z 2021 Cryst. Growth Des. 21 4354
[27] Zhang Z, Ying Y, Xu M, Zhang C, Rao Z, Ke S, Zhou Y, Huang H and Fei L 2020 Nano Lett. 20 8112
[28] Vonnegut B 1947 J. Appl. Phys. 18 593
[29] Turnbull D 1950 J. Chem. Phys. 18 198
[30] Marcolli C, Nagare B, Welti A and Lohmann U 2016 Atmos. Chem. Phys 16 8915
[31] Conrad P, Ewing G E, Karlinsey R L and Sadtchenko V 2005 J. Chem. Phys. 122 064709
[32] Sadtchenko V, Ewing G E, Nutt D R and Stone A J 2002 Langmuir 18 4632
[33] Lu H, Xu Q, Wu J, Hong R and Zhang Z 2021 J. Phys. Condens. Matter 33 375001
[34] Pedevilla P, Fitzner M and Michaelides A 2017 Phys. Rev. B 96 115441
[35] Cox S J, Kathmann S M, Slater B and Michaelides A 2015 J. Chem. Phys. 142 184704
[36] Fitzner M, Sosso G C, Cox S J and Michaelides A 2015 J. Am. Chem. Soc. 137 13658
[37] Bi Y, Cabriolu R and Li T 2016 J. Phys. Chem. C 120 1507
[38] Molinero V and Moore E B 2009 J. Phys. Chem. B 113 4008
[39] Cox S J, Kathmann S M, Slater B and Michaelides A 2015 J. Chem. Phys. 142 184705
[40] Steele W A 1973 Surf. Sci. 36 317
[41] Nguyen A H and Molinero V 2015 J. Phys. Chem. B 119 9369
[42] Plimpton S 1995 J. Comput. Phys. 117 1
[1] Modeling hydrogen exchange of proteins by a multiscale method
Wentao Zhu(祝文涛), Wenfei Li(李文飞), and Wei Wang(王炜). Chin. Phys. B, 2021, 30(7): 078701.
[2] Suppression of ice nucleation in supercooled water under temperature gradients
Li-Ping Wang(王利平), Wei-Liang Kong(孔维梁), Pei-Xiang Bian(边佩翔), Fu-Xin Wang(王福新), and Hong Liu(刘洪). Chin. Phys. B, 2021, 30(6): 068203.
[3] Energy stored in nanoscale water capillary bridges formed between chemically heterogeneous surfaces with circular patches
Bin-Ze Tang(唐宾泽), Xue-Jia Yu(余雪佳), Sergey V. Buldyrev, Nicolas Giovambattista§, and Li-Mei Xu(徐莉梅)¶. Chin. Phys. B, 2020, 29(11): 114703.
[4] Residual stress induced wetting variation on electric brush-plated Cu film
Meng Ke-Ke (孟可可), Jiang Yue (江月), Jiang Zhong-Hao (江忠浩), Lian Jian-She (连建设), Jiang Qing (蒋青). Chin. Phys. B, 2014, 23(3): 038201.
[5] Three different low-temperature plasma-based methods for hydrophilicity improvement of polyethylene films at atmospheric pressure
Chen Guang-Liang (陈光良), Zheng Xu (郑旭), Huang Jun (黄俊), Si Xiao-Lei (司晓蕾), Chen Zhi-Li (陈致力), Xue Fei (薛飞), Sylvain Massey. Chin. Phys. B, 2013, 22(11): 115206.
[6] Irradiation effects of CO2 laser parameters on surface morphology of fused silica
Xiang Xia(向霞), Zheng Wan-Guo(郑万国), Yuan Xiao-Dong(袁晓东), Dai Wei(戴威), Jiang Yong(蒋勇), Li Xi-Bin(李熙斌), Wang Hai-Jun(王海军), Lü Hai-Bing(吕海兵), and Zu Xiao-Tao(祖小涛) . Chin. Phys. B, 2011, 20(4): 044208.
No Suggested Reading articles found!