Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 128102    DOI: 10.1088/1674-1056/26/12/128102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Nucleation mechanism and morphology evolution of MoS2 flakes grown by chemical vapor deposition

He-Ju Xu(许贺菊)1,2, Jian-Song Mi(米建松)1, Yun Li(李云)1, Bin Zhang(张彬)1, Ri-Dong Cong(丛日东)1, Guang-Sheng Fu(傅广生)1, Wei Yu(于威)1
1. College of Physics Science and Technology, Hebei University, Baoding 071002, China;
2. College of science, North China University of Science and Technology, Tangshan 063009, China
Abstract  

We study the nucleation mechanism and morphology evolution of MoS2 flakes grown by chemical vapor deposition (CVD) on SiO2/Si substrates with using S and MoO3 powders. The MoS2 flake is of monolayer with triangular nucleation, which might arise from the initial MoO3-x that is deposited on the substrate, and then bonded with S to form MoS2 flake. The ratio of Mo and S is higher than 1:2 at the beginning with Mo terminated triangular nucleation formed. After that, the morphology of MoS2 flake evolves from triangle to similar hexagon, then to truncated triangle which is determined by the faster growth speed of Mo termination than that of S termination under the S rich environment. The nucleation density does not increase linearly with the increase of reactant concentration, which could be explained by the two-dimensional nucleation theory.

Keywords:  MoS2      chemical vapor deposition      morphology      nucleation  
Received:  07 June 2017      Revised:  27 August 2017      Accepted manuscript online: 
PACS:  81.07.Bc (Nanocrystalline materials)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: 

Project supported by the National Natural Science Foundation of China for Youths (Grant No. 61504036), the Natural Science Foundation of Hebei Province for Youths, China (Grant No. A2016201087), the Doctoral Fund of the Ministry of Education of China (Grant No. 20131301120003), and the Science and Technology Project of Hebei Province, China (Grant No. 13214315).

Corresponding Authors:  Ri-Dong Cong, Guang-Sheng Fu, Guang-Sheng Fu     E-mail:  congrd@hbu.edu.cn;fugs@hbu.cn;fugs@hbu.cn

Cite this article: 

He-Ju Xu(许贺菊), Jian-Song Mi(米建松), Yun Li(李云), Bin Zhang(张彬), Ri-Dong Cong(丛日东), Guang-Sheng Fu(傅广生), Wei Yu(于威) Nucleation mechanism and morphology evolution of MoS2 flakes grown by chemical vapor deposition 2017 Chin. Phys. B 26 128102

[1] Schwierz F 2010 Nat. Nanotechnol. 5 487
[2] Wang R, Chien H C, Kumar J, Kumar N, Chiu H Y and Zhao H 2014 ACS Appl. Mater. Inter. 6 314
[3] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[4] Lancellotti L, Polichetti T, Ricciardella F, Tari O, Gnanapragasam S, Daliento S and Di Francia G 2012 Thin Solid Films 522 390
[5] Yin Z, Zhu J, He Q, Cao X, Tan C, Chen H, Yan Q and Zhang H 2014 Adv. Energy Mater. 4 1
[6] Ganatra R and Zhang Q 2014 ACS Nano. 8 4074
[7] Padilha J E, Peelaers H, Janotti A and Van de Walle C G 2014 Phys. Rev. B 90 205420
[8] Park J W, So H S, Kim S, Choi S H, Lee H, Lee J, Lee C and Kim Y 2014 J. Appl. Phys. 116 183509
[9] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nano. 6 147
[10] Lin M W, Liu L, Lan Q, Tan X, Dhindsa K, Zeng P, Naik V M, Cheng M M and Zhou Z 2012 J. Phys. D:Appl. Phys. 45 345102
[11] Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechnol. 7 490
[12] Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494
[13] Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M and Chhowalla M 2011 Nano Lett. 11 5111
[14] Coleman J N, Lotya M and O'Neill A 2011 Science 331 568
[15] Laskar M R, Ma L, Kannappan S, Sung Park P, Krishnamoorthy S, Nath D N, Lu W, Wu Y and Rajan S 2013 Appl. Phys. Lett. 102 252108
[16] Mann J, Sun D, Ma Q, Chen J R, Preciado E, Ohta T, Diaconescu B, Yamaguchi K, Tran T, Wurch M, Magnone K, Heinz T F, Kellogg G L, Kawakami R and Bartels L 2013 Eur. Phys. J. B 86 226
[17] Lin Y C, Zhang W, Huang J K, Liu K K, Lee Y H, Liang C T, Chu C W and Li L J 2012 Nanoscale 4 6637
[18] Wang S, Rong Y, Fan Y, Pacios M, Bhaskaran H, He K and Warner J H 2014 Chem. Mater. 26 6371
[19] Ji Q, Zhang Y, Zhang Y and Liu Z 2015 Chem Soc Rev. 44 2587
[20] van der Zannde A M, Huang P Y, chenet D A, Berkelbach T C, You Y, Lee G H, Heinz T F, Reichman D R, Muller D A and Hone J C 2013 Nat. Mater. 12 554
[21] Shaw J C, Zhou H, Chen Y, Weiss N O, Liu Y, Huang Y and Duan X 2014 Nano Res. 7 511
[22] Tao J, Chai J, Lu X, Wong L M, Wong T I, Pan J, Xiong Q, Chia D and Wang S 2015 Nanoscale 7 2497
[23] Korn T, Heydrich S, Hirmer M, Schmutzler J and Schüller C 2011 Appl. Phys. Lett. 99 102109
[24] Sundaram R S, Engel M, Lombardo A, Krupke R, Ferrari A C, Avouris Ph and Steiner M 2013 Nano Lett. 13 1416
[25] Liu H, Ansah Antwi K K, Ying J, Chua S and Chi D 2014 Nanotechnology 25 405702
[26] Mouri S, Miyauchi Y and Matsuda K 2013 Nano Lett. 13 5944
[27] Splendiani A, Sun L, Zhang Y B, Li T S, Kim J H, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
[28] Liang T, Xie S, Huang Z T, Fu W F, Cai Y, Yang X, Chen H Z, Ma X Y, Iwai H, Fujita D, Hanagata N and Xu M S 2016 Adv. Mater. Interfaces 1600687
[29] Zhang J, Yu H, Chen W, Tian X, Liu D, Cheng M, Xie G, Yang W, Yang R, Bai X, Shi D and Zhang G 2014 ACS Nano 8 6024
[1] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[2] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[3] Tuning the particle size, physical properties, and photocatalytic activity of Ag3PO4 materials by changing the Ag+/PO43- ratio
Hung N M, Oanh L T M, Chung D P, Thang D V, Mai V T, Hang L T, and Minh N V. Chin. Phys. B, 2023, 32(3): 038102.
[4] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[5] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[6] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[7] MoS2/Si tunnel diodes based on comprehensive transfer technique
Yi Zhu(朱翊), Hongliang Lv(吕红亮), Yuming Zhang(张玉明), Ziji Jia(贾紫骥), Jiale Sun(孙佳乐), Zhijun Lyu(吕智军), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(1): 018501.
[8] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[9] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[10] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[11] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[12] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[13] Anisotropic refraction and valley-spin-dependent anomalous Klein tunneling in a 1T'-MoS2-based p-n junction
Fenghua Qi(戚凤华) and Xingfei Zhou(周兴飞). Chin. Phys. B, 2022, 31(7): 077301.
[14] Vacuum current-carrying tribological behavior of MoS2-Ti films with different conductivities
Lu-Lu Pei(裴露露), Peng-Fei Ju(鞠鹏飞), Li Ji(吉利), Hong-Xuan Li(李红轩),Xiao-Hong Liu(刘晓红), Hui-Di Zhou(周惠娣), and Jian-Min Chen(陈建敏). Chin. Phys. B, 2022, 31(6): 066201.
[15] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
No Suggested Reading articles found!