Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 010504    DOI: 10.1088/1674-1056/abca1e
RAPID COMMUNICATION Prev   Next  

Surface active agents stabilize nanodroplets and enhance haze formation

Yunqing Ma(马韵箐), Changsheng Chen(陈昌盛), and Xianren Zhang(张现仁)†
State Key Laboratory of Organic-inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
Abstract  Although many organic molecules found commonly in the atmosphere are known to be surface-active in aqueous solutions, their effects on the mechanisms underlying haze formation remain unclear. In this paper, based on a simple thermodynamic analysis, we report that the adsorption of amphiphilic organics alone not only lowers the surface tension, but also unexpectedly stabilizes nanodroplets of specific size under water vapor supersaturation. Then we determine how various factors, including relative humidity, water activity effect due to dissolution of inorganic components as well as surface tension effect due to surface adsorption of organic components, cooperatively induce the stability of nanodroplets. The nanodroplet stability behaviors not captured in the current theory would change the formation mechanism of haze droplets, from the hygroscopic growth pathway to a nonclassical two-step nucleation pathway.
Keywords:  nanodroplet      stability      aerosol      haze      nucleation  
Received:  09 November 2020      Revised:  09 November 2020      Accepted manuscript online:  13 November 2020
PACS:  05.70.Np (Interface and surface thermodynamics)  
  64.60.Q- (Nucleation)  
  92.60.Mt (Particles and aerosols)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21978007)
Corresponding Authors:  Corresponding author. E-mail: zhangxr@mail.buct.edu.cn   

Cite this article: 

Yunqing Ma(马韵箐), Changsheng Chen(陈昌盛), and Xianren Zhang(张现仁) Surface active agents stabilize nanodroplets and enhance haze formation 2021 Chin. Phys. B 30 010504

1 Zhang R, Khalizov A, Wang L, Hu M and Xu W 2012 Chem. Rev. 112 1957
2 Hegg D A and Baker M B 2009 Rep. Prog. Phys. 72 056801
3 Kulmala M, Kontkanen J, Junninen H, et al.2013 Science 339 943
4 Huang R, Zhang Y, Bozztti C, et al.2014 Nature 514 218
5 Guo S, Hu M, Peng J, et al.2020 Proc. Natl. Acad. Sci. USA 117 3427
6 Guo S, Hu M, Zamora M L, et al.2014 Proc. Natl. Acad. Sci. USA 111 17373
7 Yue D L, Hu M, Zhang R Y, et al.2010 Atmos. Chem. Phys. 10 4953
8 Zhao Z, Kong K, Wang S, et al.2019 J. Phys. Chem. Lett. 10 1126
9 Petters M D and Kreidenweis S M 2007 Atmos. Chem. Phys. 7 1961
10 Lee A K Y, Ling T Y and Chan C K.2008 Faraday Discuss. 137 245
11 Kanakidou M, Seinfeld J H, Pandis S N, et al.2005 Atmos. Chem. Phys. 5 1053
12 Ovadnevaite J, Zuend A, Laaksonen A, et al.2017 Nature 546 637
13 Prisle N L, Raatikainen T, Laaksonen A and Bilde M 2010 Atmos. Chem. Phys. 10 5663
14 Ruehl C R, Davies J F and Wilson K R 2016 Science 351 1447
15 Konopka P 1996 J. Atmos. Sci. 55 3157
16 Kohler H 1936 Trans. Farad. Soc. 32 1152
17 McFiggans G, Artaxo P, Baltensperger U, et al.2006 Atmos. Chem. Phys. 6 2593
[1] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[2] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[3] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[4] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[5] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[6] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[7] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[8] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[9] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[10] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[11] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[12] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[13] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[14] Water contact angles on charged surfaces in aerosols
Yu-Tian Shen(申钰田), Ting Lin(林挺), Zhen-Ze Yang(杨镇泽), Yong-Feng Huang(黄永峰), Ji-Yu Xu(徐纪玉), and Sheng Meng(孟胜). Chin. Phys. B, 2022, 31(5): 056801.
[15] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
No Suggested Reading articles found!