Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 068203    DOI: 10.1088/1674-1056/abd764

Suppression of ice nucleation in supercooled water under temperature gradients

Li-Ping Wang(王利平), Wei-Liang Kong(孔维梁), Pei-Xiang Bian(边佩翔), Fu-Xin Wang(王福新), and Hong Liu(刘洪)
School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  Understanding the behaviours of ice nucleation in non-isothermal conditions is of great importance for the preparation and retention of supercooled water. Here ice nucleation in supercooled water under temperature gradients is analyzed thermodynamically based on classical nucleation theory (CNT). Given that the free energy barrier for nucleation is dependent on temperature, different from a uniform temperature usually used in CNT, an assumption of linear temperature distribution in the ice nucleus was made and taken into consideration in analysis. The critical radius of the ice nucleus for nucleation and the corresponding nucleation model in the presence of a temperature gradient were obtained. It is observed that the critical radius is determined not only by the degree of supercooling, the only dependence in CNT, but also by the temperature gradient and even the Young's contact angle. Effects of temperature gradient on the change in free energy, critical radius, nucleation barrier and nucleation rate with different contact angles and degrees of supercooling are illustrated successively. The results show that a temperature gradient will increase the nucleation barrier and decrease the nucleation rate, particularly in the cases of large contact angle and low degree of supercooling. In addition, there is a critical temperature gradient for a given degree of supercooling and contact angle, at the higher of which the nucleation can be suppressed completely.
Keywords:  supercooled water      ice nucleation      temperature gradient      thermodynamic analysis      classical nucleation theory  
Received:  18 November 2020      Revised:  12 December 2020      Accepted manuscript online:  30 December 2020
PACS:  82.60.Nh (Thermodynamics of nucleation)  
  05.70.-a (Thermodynamics)  
  64.70.D- (Solid-liquid transitions)  
  68.55.A- (Nucleation and growth)  
Corresponding Authors:  Fu-Xin Wang, Hong Liu     E-mail:;

Cite this article: 

Li-Ping Wang(王利平), Wei-Liang Kong(孔维梁), Pei-Xiang Bian(边佩翔), Fu-Xin Wang(王福新), and Hong Liu(刘洪) Suppression of ice nucleation in supercooled water under temperature gradients 2021 Chin. Phys. B 30 068203

[1] Jones S M, Reveley M S, Evans J K and Barrientos F A 2008 National Aeronautics and Space Administration NASA TM-2008-215107
[2] Parent O and Ilinca A 2011 Cold Regions Science and Technology 65 88
[3] Zhou Y, Niu S J and Lü J J 2013 Advances in Atmospheric Sciences 30 1053
[4] Stonehouse G G and Evans J A 2015 Journal of Food Engineering 148 74
[5] Storelvmo T 2017 Annual Review of Earth and Planetary Sciences 45 199
[6] Cao Y H, Tan W Y and Wu Z L 2018 Aerospace Science and Technology 75 353
[7] de Vries R J, Tessier S N, Banik P D, Nagpal S, Cronin S E J, Ozer S, Hafiz E O A, van Gulik T M, Yarmush M L, Markmann J F, Toner M, Yeh H and Uygun K 2020 Nat. Protoc. 15 2024
[8] Rosenfeld D and Woodley W L 2000 Nature 405 440
[9] You J X, Wang J C, Wang L L, Wang Z J, Li J J and Lin X 2016 Chin. Phys. B 25 128202
[10] Bartels-Rausch T 2013 Nature 494 27
[11] Li C, Gao X and Li Z G 2017 J. Phys. Chem. C 121 11552
[12] Jin S L, Liu Y, Deiseroth M, Liu J, Backus E H G, Li H, Xue H, Zhao L S, Zeng X C, Bonn M and Wang J J 2020 J. Am. Chem. Soc. 142 17956
[13] Liu K, Wang C L, Ma J, Shi G S, Yao X, Fang H P, Song Y L and Wang J J 2016 Proc. Natl. Acad. Sci. USA 113 14739
[14] Zheng Q, Durben D J, Wolf G H and Angell C A 1991 Science 254 829
[15] Young S W and Van Sicklen W J 1913 J. Am. Chem. Soc. 35 1067
[16] Ren G and Wang Y T 2015 Chin. Phys. B 24 126402
[17] Dalvi-Isfahan M, Hamdami N, Xanthakis E and Le-Bail A 2017 Journal of Food Engineering 195 222
[18] Yang F, Cruikshank O, He W, Kostinski A and Shaw R A 2018 Phys. Rev. E 97 023103
[19] Richard D and Speck T 2019 Phys. Rev. E 99 062801
[20] Chen G, Kong W L, Wang L P and Wang F X 2020 International Journal of Heat and Mass Transfer 152 119462
[21] Yang F, Cantrell W H, Kostinski A B, Shaw R A and Vogelmann A M 2020 Atmosphere 11 1
[22] Pereyra R G, Szleifer I and Carignano M A 2011 J. Chem. Phys. 135 034508
[23] Niu H Y, Yang Y I and Parrinello M 2019 Phys. Rev. Lett. 122 245501
[24] Huang H, Yarmush M L and Usta O B 2018 Nat. Commun. 9 3201
[25] Schremb M, Roisman I V and Tropea C 2017 Phys. Rev. E 95 022805
[26] Wang L P, Kong W L, Wang F X and Liu H 2019 International Journal of Heat and Mass Transfer 130 831
[27] Kalikmanov V I 2013 Nucleation Theory (Dordrecht: Springer)
[28] McGraw R and LaViolette R A 1995 The Journal of Chemical Physics 102 8983
[29] Ford I J and Clement C F 1989 J. Phys. A: Math. Gen. 22 4007
[30] Grinin A P and Kuni F M 1989 Theor. Math. Phys. 80 968
[31] Cao Y Y and Yang G W 2015 J. Appl. Phys. 117 224303
[32] Reguera D and Rubi J M 2003 The Journal of Chemical Physics 119(18) 9877
[33] Motooka T and Munetoh S 2004 Phys. Rev. B 69 073307
[34] Okawa S, Saito A and Suto H 2002 International Journal of Refrigeration 25 514
[35] Ickes L, Welti A, Hoose C and Lohmann U 2015 Phys. Chem. Chem. Phys. 17 5514
[36] Bai G Y, Gao D, Liu Z, Zhou X and Wang J J 2019 Nature 576 437
[37] Wang L P, Kong W L, Wang F X and Liu H 2019 AIP Adv. 9 125122
[38] Pruppacher H R and Klett J D 2010 Microphysics of Clouds and Precipitation (Dordrecht: Springer)
[39] Karthika S, Radhakrishnan T K and Kalaichelvi P 2016 Crystal Growth & Design 16 6663
[40] Quan X J, Chen G and Cheng P 2011 International Journal of Heat and Mass Transfer 54 4762
[41] Yuan H S, Tan S C, Du W A, Ding S H and Guo C 2018 International Journal of Heat and Mass Transfer 122 1198
[42] Lutsko J F and Duran-Olivencia M A 2013 J. Chem. Phys. 138 244908
[43] Koss P, Statt A, Virnau P and Binder K 2017 Phys. Rev. E 96 042609
[44] Nguyen V D, Schoemaker F C, Blokhuis E M and Schall P 2018 Phys. Rev. Lett. 121 246102
[45] Glicksman M E 2011 Principles Of Solidification (Dordrecht: Springer)
[46] Yang G L, Lin X, Song M H, Hu Q, Wang Z T and Huang W D 2014 Chin. Phys. B 23 086401
[47] Fletcher N H 1958 J. Chem. Phys. 29 572
[48] Zobrist B, Koop T, Luo B P, Marcolli C and Peter T 2007 J. Phys.l Chem. C 111 2149
[49] Eberle P, Tiwari M K, Maitra T and Poulikakos D 2014 Nanoscale 6 4874
[50] Smith R S and Kay B D 1999 Nature 398 788
[51] Zhang R, Hao P F, Zhang X W and He F 2018 International Journal of Heat and Mass Transfer 122 395
[52] Matuszak D, Aranovich G L and Donohue M D 2006 Journal of NonEquilibrium Thermodynamics 31 355
[53] Prestipino S, Laio A and Tosatti E 2012 Phys. Rev. Lett. 108 225701
[54] Ge Z, Cahill D G and Braun P V 2006 Phys. Rev. Lett. 96 186101
[55] Alosious S, Kannam S K, Sathian S P and Todd B D 2019 J. Chem. Phys. 151 194502
[56] Shao M Z, Wang Y T and Zhou X 2020 Chin. Phys. B 29 080505
[57] Wu D, Duan Y Y and Yang Z 2010 Appl. Phys. Lett. 97 081911
[58] Wang Y, Liu X, Hoose C and Wang B 2014 Atmospheric Chemistry and Physics 14 10411
[59] Liang Z, Sasikumar K and Keblinski P 2014 Phys. Rev. Lett. 113 065901
[60] Sosso G C, Chen J, Cox S J, Fitzner M, Pedevilla P, Zen A and Michaelides A 2016 Chem. Rev. 116 7078
[61] Hong J N and Jiang Y 2020 Chin. Phys. B 29 116803
[1] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[2] Growth characteristics of type IIa large single crystal diamond with Ti/Cu as nitrogen getter in FeNi-C system
Ming-Ming Guo(郭明明), Shang-Sheng Li(李尚升), Mei-Hua Hu(胡美华), Tai-Chao Su(宿太超), Jun-Zuo Wang(王君卓), Guang-Jin Gao(高广进), Yue You(尤悦), Yuan Nie(聂媛). Chin. Phys. B, 2020, 29(1): 018101.
[3] Experimental demonstration of influence of underwater turbulence on ghost imaging
Man-Qian Yin(殷曼倩), Le Wang(王乐), Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2019, 28(9): 094201.
[4] Analysis of melt ejection during long pulsed laser drilling
Ting-Zhong Zhang(张廷忠), Zhi-Chao Jia(贾志超), Hai-Chao Cui(崔海超), De-Hua Zhu(朱德华), Xiao-Wu Ni(倪晓武), Jian Lu(陆健). Chin. Phys. B, 2016, 25(5): 054206.
[5] Effects of temperature gradient on the interface microstructure and diffusion of diffusion couples: Phase-field simulation
Li Yong-Sheng (李永胜), Wu Xing-Chao (吴兴超), Liu Wei (刘苇), Hou Zhi-Yuan (侯志远), Mei Hao-Jie (梅浩杰). Chin. Phys. B, 2015, 24(12): 126401.
[6] Temperature-controllable spin-polarized current and spin polarization in a Rashba three-terminal double-quantum-dot device
Hong Xue-Kun (洪学鹍), Yang Xi-Feng (杨希峰), Feng Jin-Fu (冯金福), Liu Yu-Shen (刘玉申). Chin. Phys. B, 2013, 22(5): 057306.
[7] Effects of carbon convection field on large diamond growth under high-pressure high-temperature conditions
Hu Mei-Hua (胡美华), Li Shang-Sheng (李尚升), Ma Hong-An (马红安), Su Tai-Chao (宿太超), Li Xiao-Lei (李小雷), Hu Qiang (胡强), Jia Xiao-Peng (贾晓鹏). Chin. Phys. B, 2012, 21(9): 098101.
[8] Generating and reversing spin accumulation by temperature gradient in a quantum dot attached to ferromagnetic leads
Bai Xu-Fang(白旭芳), Chi Feng(迟锋), Zheng Jun(郑军), and Li Yi-Nan(李亦楠) . Chin. Phys. B, 2012, 21(7): 077301.
[9] Growth of gem-grade nitrogen-doped diamond crystals heavily doped with the addition of Ba(N3)2
Huang Guo-Feng(黄国锋), Jia Xiao-Peng(贾晓鹏), Li Yong(李勇), Hu Mei-Hua(胡美华), Li Zhan-Chang(李战厂), Yan Bing-Min(颜丙敏), and Ma Hong-An(马红安). Chin. Phys. B, 2011, 20(7): 078103.
[10] Synthesis and characterization of p-type boron-doped IIb diamond large single crystals
Li Shang-Sheng(李尚升), Ma Hong-An(马红安), Li Xiao-Lei(李小雷), Su Tai-Chao(宿太超), Huang Guo-Feng(黄国锋), Li Yong(李勇), and Jia Xiao-Peng(贾晓鹏). Chin. Phys. B, 2011, 20(2): 028103.
[11] Synthesis of large diamond crystals containing high-nitrogen concentration at high pressure and high temperature using Ni-based solvent by temperature gradient method
Huang Guo-Feng(黄国锋), Jia Xiao-Peng(贾晓鹏), Li Shang-Sheng(李尚升), Zhang Ya-Fei(张亚飞), Li Yong(李勇), Zhao Ming(赵明), and Ma Hong-An(马红安). Chin. Phys. B, 2010, 19(11): 118101.
[12] Study of electron temperature gradient instability in toroidal plasmas with negative magnetic shear
Jian Guang-De (简广德), Dong Jia-Qi (董家齐). Chin. Phys. B, 2004, 13(6): 898-904.
No Suggested Reading articles found!