Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 105202    DOI: 10.1088/1674-1056/ac0521
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Multibeam Raman amplification of a finite-duration seed in a short distance

Y G Chen(陈雨谷)1, Y Chen(陈勇)1, S X Xie(谢善秀)1, N Peng(彭娜)1, J Q Yu(余金清)1, and C Z Xiao(肖成卓)1,2,†
1 Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China;
2 Collaborative Innovation Center of IFSA(CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  A new scheme of multibeam Raman amplification (MRA) is proposed in virtue of the collective mode by sharing a common scattered light. Multiple laser beams can provide a higher growth rate, but the overlapping region limits the amplification length. We suggest to use a finite-duration seed to facilitate MRA in a short distance. Through two-dimensional particle-in-cell simulations, we find that two-beam Raman amplification has a much higher growth rate than that of single-beam one. This growth rate depends on the initial seed amplitude, electron temperature, and seed duration. An empirical criterion, γ0τc=1, where γ0 is the theoretical growth rate of MRA, is used to choose a proper duration for a higher growth rate. After a total amplification length of 320 μm, the two-beam Raman amplification shows nonlinear features of pulse compression and a bow-shape wave front, indicating that the amplification has finally entered the self-similar regime.
Keywords:  multibeam Raman amplification      growth rate      finite-duration  
Received:  20 April 2021      Revised:  22 May 2021      Accepted manuscript online:  26 May 2021
PACS:  52.38.-r (Laser-plasma interactions)  
  52.65.-y (Plasma simulation)  
Fund: Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA25050700), the National Natural Science Foundation of China (Grant No. 11805062), Science Challenge Project (Grant No. TZ2016005), and Natural Science Foundation of Hunan Province, China (Grant Nos. 2020JJ5029 and 2020JJ5031), and the Project of Science and Technology on Plasma Physics Laboratory (Grant No. 6142A04190111).
Corresponding Authors:  C Z Xiao     E-mail:  xiaocz@hnu.edu.cn

Cite this article: 

Y G Chen(陈雨谷), Y Chen(陈勇), S X Xie(谢善秀), N Peng(彭娜), J Q Yu(余金清), and C Z Xiao(肖成卓) Multibeam Raman amplification of a finite-duration seed in a short distance 2021 Chin. Phys. B 30 105202

[1] Strickland D and Mourou G 1985 Opt. Commun. 55 447
[2] Sadler J D, Silva L O, Fonseca R A, Glize K, Kasim M F, Savin A, Aboushelbaya R, Mayr M W, Spiers B, Wang R H W, Bingham R, Trines R M G M and Norreys P A 2018 Commun. Phys. 1 19
[3] Trines R M G M, Fiuza F, Bingham R, Fonseca R A, Silva L O, Cairns R A and Norreys P A 2011 Nat. Phys. 7 87
[4] Malkin V M, Shvets G and Fisch N J 1999 Phys. Rev. Lett. 82 4448
[5] Malkin V M, Shvets G and Fisch N J 2000 Phys. Plasmas 7 2232
[6] Fisch N J and Malkin V M 2003 Phys. Plasmas 10 2056
[7] Malkin V M and Fisch N J 2005 Phys. Plasmas 12 044507
[8] Shvets G, Fisch N J, Pukhov A and Meyer-ter Vehn J 1998 Phys. Rev. Lett. 81 4879
[9] Trines R M G M, Fiuza F, Bingham R, Fonseca R A, Silva L O, Cairns R A and Norreys P A 2011 Nat. Phys. 7 87
[10] Andreev A A, Riconda C, Tikhonchuk V T and Weber S 2006 Phys. Plasmas 13 053110
[11] Mourou G A, Fisch N J, Malkin V M, Toroker Z, Khazanov E A, Sergeev A M, Tajima T and Le Garrec B 2012 Opt. Commun. 285 720
[12] Capjack C E, James C R and McMullin J N 1982 J. Appl. Phys. 53 4046
[13] Andreev A A and Sutyagin A N 1989 Sov. J. Quantum Electron. 19 1579
[14] Maier M, Kaiser W and Giordmaine J A 1966 Phys. Rev. Lett. 17 1275
[15] Xiao C Z, Zhuo H B, Yin Y, Liu Z J, Zheng C Y, Zhao Y and He X T 2018 Plasma Phys. Control. Fusion. 60 025020
[16] Xiao C Z, Zhuo H B, Yin Y, Liu Z J, Zheng C Y and He X T 2019 Phys. Plasmas 26 062109
[17] Xiao C Z, Zhuo H B, Yin Y, Liu Z J, Zheng C Y and He X T 2020 Nucl. Fusion 60 016022
[18] Jia Q, Barth I, Edwards M R, Mikhailova J M and Fisch N J 2016 Phys. Plasmas 23 053118
[19] Cheng W, Avitzour Y, Ping Y and Suckewer S 2005 Phys. Rev. Lett. 94 045003
[20] Ren J, Cheng W, Li S and Suckewer S 2007 Nat. Phys. 3 732
[21] Ping Y, Kirkwood R K, Wang T L, Clark D S, Wilks S C, Meezan N, Berger R L, Wurtele J, Fisch N J, Malkin V M, Valeo E J, Martins S F and Joshi C 2009 Phys. Plasmas 16 123113
[22] Pai C H, Lin M W, Ha L C, Huang S T, Tsou Y C, Chu H H, Lin J Y, Wang J and Chen S Y 2008 Phys. Rev. Lett. 101 065005
[23] Ren J, Li S, Morozov A, Suckewer S, Yampolsky N A, Malkin V M and Fisch N J 2008 Phys. Plasmas 15 056702
[24] DuBois D F, Bezzerides B and Rose H A 1992 Phys. Fluids B 4 241
[25] Yang S J, Zhuo H B, Yin Y, Liu Z J, Zheng C Y, He X T and Xiao C Z 2020 Phys. Rev. E 102 013205
[26] Balakin A A, Fraiman G M, Fisch N J and Malkin V M 2003 Phys. Plasmas 10 4856
[27] Kirkwood R K, Turnbull D P, Chapman T, Wilks S C, Rosen M D, London R A, Pickworth L A, Dunlop W H, Moody J D, Strozzi D J, Michel P A, Divol L, Landen O L, MacGowan B J, Van Wonterghem B M, Fournier K B and Blue B E 2017 Nat. Phys. 14 80
[28] Jia Q, Shi Y, Qin H and Fisch Nathaniel J 2017 Phys. Plasmas 24 093103
[29] Chen Y, Zheng C Y, Liu Z J, Cao L H, Feng Q S and Xiao C Z 2020 Plasma Phys. Control. Fusion. 62 105020
[30] DuBois D F, Bezzerides B and Rose H A 1992 Phys. Fluids B 4 241
[31] Depierreux S, Neuville C, Baccou C, Tassin V, Casanova M, Masson-Laborde P E, Borisenko N, Orekhov A, Colaitis A, Debayle A, Duchateau G, Heron A, Huller S, Loiseau P, Nicolaï, Pesme D, Riconda C, Tran G, Bahr R, Katz J, Stoeckl C, Seka W, Tikhonchuk V and Labaune C 2016 Phys. Rev. Lett. 117 235002
[32] Michel P, Divol L, Dewald E L, Milovich J L, Hohenberger M, Jones O S, Hopkins L B, Berger R L, Kruer W L and Moody J D 2015 Phys. Rev. Lett. 115 055003
[33] Edwards M R, Jia Q, Mikhailova J M and Fisch N J 2016 Phys. Plasmas 23 083122
[34] Qu Kenan, Barth Ido and Fisch Nathaniel J 2017 Phys. Rev. Lett. 118 164801
[35] Mounaix P, Pesme D, Rozmus W and Casanova M 1993 Phys. of Fluids B 5 3304
[36] Malkin V M, Shvets G and Fisch N J 2000 Phys. Rev. Lett. 84 1208
[1] Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties
Zhen-Hua Li(李振华), Peng-Fei Shao(邵鹏飞), Gen-Jun Shi(施根俊), Yao-Zheng Wu(吴耀政), Zheng-Peng Wang(汪正鹏), Si-Qi Li(李思琦), Dong-Qi Zhang(张东祺), Tao Tao(陶涛), Qing-Jun Xu(徐庆君), Zi-Li Xie(谢自力), Jian-Dong Ye(叶建东), Dun-Jun Chen(陈敦军), Bin Liu(刘斌), Ke Wang(王科), You-Dou Zheng(郑有炓), and Rong Zhang(张荣). Chin. Phys. B, 2022, 31(1): 018102.
[2] Tests of the real-time vertical growth rate calculation on EAST
Na-Na Bao(鲍娜娜), Yao Huang(黄耀), Jayson Barr, Zheng-Ping Luo(罗正平), Yue-Hang Wang(汪悦航), Shu-Liang Chen(陈树亮), Bing-Jia Xiao(肖炳甲), David Humphreys. Chin. Phys. B, 2020, 29(6): 065204.
[3] Molecular beam epitaxial growth of high quality InAs/GaAs quantum dots for 1.3-μ quantum dot lasers
Hui-Ming Hao(郝慧明), Xiang-Bin Su(苏向斌), Jing Zhang(张静), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(7): 078104.
[4] Decline of nucleation in the heating process with a high heating rate
Yang Gao-Lin (杨高林), Lin Xin (林鑫), Song Meng-Hua (宋梦华), Hu Qiao (胡桥), Wang Zhi-Tai (汪志太), Huang Wei-Dong (黄卫东). Chin. Phys. B, 2014, 23(8): 086401.
[5] Growth rate of peeling mode in the near separatrix region of diverted tokamak plasma
Shi Bing-Ren (石秉仁). Chin. Phys. B, 2014, 23(1): 015202.
[6] Dispersion relation and growth rate for a corrugated channel free-electron laser with a helical wiggler pump
A. Hasanbeigi, H. Mehdiank. Chin. Phys. B, 2013, 22(7): 075205.
[7] Linear analysis of a three-dimensional rectangular Cerenkov maser with a sheet electron beam
Chen Ye(陈晔), Zhao Ding(赵鼎), and Wang Yong(王勇) . Chin. Phys. B, 2011, 20(10): 108402.
[8] Wave growth rate in a cylindrical metal waveguide with ion-channel guiding of a relativistic electron beam
Li Hai-Rong(李海容), Tang Chang-Jian(唐昌建), and Wang Shun-Jin(王顺金). Chin. Phys. B, 2010, 19(12): 124101.
[9] The stability margin on EAST tokamak
Qian Jin-Ping(钱金平), Wan Bao-Nian(万宝年), Shen Biao(沈彪), M.L. Walker, D.A. Humphreys, and Xiao Bing-Jia(肖炳甲). Chin. Phys. B, 2009, 18(6): 2432-2440.
[10] Influence of reaction gas flows on the properties of SiGe:H thin film prepared by plasma assisted reactive thermal chemical vapour deposition
Zhang Li-Ping(张丽平), Zhang Jian-Jun(张建军), Shang Ze-Ren(尚泽仁), Hu Zeng-Xin(胡增鑫), Geng Xin-Hua(耿新华), and Zhao Ying(赵颖). Chin. Phys. B, 2008, 17(9): 3448-3452.
[11] Stimulated Raman scattering instability in partially ionized laser-plasma
Zhang Jia-Tai (张家泰). Chin. Phys. B, 2005, 14(1): 169-171.
[12] THE GROWTH RATE AND STATISTICAL FLUCTUATION OF BOSE-EINSTEIN CONDENSATE FORMATION
Yan Ke-zhu (闫珂柱), Tan Wei-han (谭维翰). Chin. Phys. B, 2000, 9(7): 485-489.
No Suggested Reading articles found!