PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Multibeam Raman amplification of a finite-duration seed in a short distance |
Y G Chen(陈雨谷)1, Y Chen(陈勇)1, S X Xie(谢善秀)1, N Peng(彭娜)1, J Q Yu(余金清)1, and C Z Xiao(肖成卓)1,2,† |
1 Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China; 2 Collaborative Innovation Center of IFSA(CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China |
|
|
Abstract A new scheme of multibeam Raman amplification (MRA) is proposed in virtue of the collective mode by sharing a common scattered light. Multiple laser beams can provide a higher growth rate, but the overlapping region limits the amplification length. We suggest to use a finite-duration seed to facilitate MRA in a short distance. Through two-dimensional particle-in-cell simulations, we find that two-beam Raman amplification has a much higher growth rate than that of single-beam one. This growth rate depends on the initial seed amplitude, electron temperature, and seed duration. An empirical criterion, γ0τc=1, where γ0 is the theoretical growth rate of MRA, is used to choose a proper duration for a higher growth rate. After a total amplification length of 320 μm, the two-beam Raman amplification shows nonlinear features of pulse compression and a bow-shape wave front, indicating that the amplification has finally entered the self-similar regime.
|
Received: 20 April 2021
Revised: 22 May 2021
Accepted manuscript online: 26 May 2021
|
PACS:
|
52.38.-r
|
(Laser-plasma interactions)
|
|
52.65.-y
|
(Plasma simulation)
|
|
Fund: Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA25050700), the National Natural Science Foundation of China (Grant No. 11805062), Science Challenge Project (Grant No. TZ2016005), and Natural Science Foundation of Hunan Province, China (Grant Nos. 2020JJ5029 and 2020JJ5031), and the Project of Science and Technology on Plasma Physics Laboratory (Grant No. 6142A04190111). |
Corresponding Authors:
C Z Xiao
E-mail: xiaocz@hnu.edu.cn
|
Cite this article:
Y G Chen(陈雨谷), Y Chen(陈勇), S X Xie(谢善秀), N Peng(彭娜), J Q Yu(余金清), and C Z Xiao(肖成卓) Multibeam Raman amplification of a finite-duration seed in a short distance 2021 Chin. Phys. B 30 105202
|
[1] Strickland D and Mourou G 1985 Opt. Commun. 55 447 [2] Sadler J D, Silva L O, Fonseca R A, Glize K, Kasim M F, Savin A, Aboushelbaya R, Mayr M W, Spiers B, Wang R H W, Bingham R, Trines R M G M and Norreys P A 2018 Commun. Phys. 1 19 [3] Trines R M G M, Fiuza F, Bingham R, Fonseca R A, Silva L O, Cairns R A and Norreys P A 2011 Nat. Phys. 7 87 [4] Malkin V M, Shvets G and Fisch N J 1999 Phys. Rev. Lett. 82 4448 [5] Malkin V M, Shvets G and Fisch N J 2000 Phys. Plasmas 7 2232 [6] Fisch N J and Malkin V M 2003 Phys. Plasmas 10 2056 [7] Malkin V M and Fisch N J 2005 Phys. Plasmas 12 044507 [8] Shvets G, Fisch N J, Pukhov A and Meyer-ter Vehn J 1998 Phys. Rev. Lett. 81 4879 [9] Trines R M G M, Fiuza F, Bingham R, Fonseca R A, Silva L O, Cairns R A and Norreys P A 2011 Nat. Phys. 7 87 [10] Andreev A A, Riconda C, Tikhonchuk V T and Weber S 2006 Phys. Plasmas 13 053110 [11] Mourou G A, Fisch N J, Malkin V M, Toroker Z, Khazanov E A, Sergeev A M, Tajima T and Le Garrec B 2012 Opt. Commun. 285 720 [12] Capjack C E, James C R and McMullin J N 1982 J. Appl. Phys. 53 4046 [13] Andreev A A and Sutyagin A N 1989 Sov. J. Quantum Electron. 19 1579 [14] Maier M, Kaiser W and Giordmaine J A 1966 Phys. Rev. Lett. 17 1275 [15] Xiao C Z, Zhuo H B, Yin Y, Liu Z J, Zheng C Y, Zhao Y and He X T 2018 Plasma Phys. Control. Fusion. 60 025020 [16] Xiao C Z, Zhuo H B, Yin Y, Liu Z J, Zheng C Y and He X T 2019 Phys. Plasmas 26 062109 [17] Xiao C Z, Zhuo H B, Yin Y, Liu Z J, Zheng C Y and He X T 2020 Nucl. Fusion 60 016022 [18] Jia Q, Barth I, Edwards M R, Mikhailova J M and Fisch N J 2016 Phys. Plasmas 23 053118 [19] Cheng W, Avitzour Y, Ping Y and Suckewer S 2005 Phys. Rev. Lett. 94 045003 [20] Ren J, Cheng W, Li S and Suckewer S 2007 Nat. Phys. 3 732 [21] Ping Y, Kirkwood R K, Wang T L, Clark D S, Wilks S C, Meezan N, Berger R L, Wurtele J, Fisch N J, Malkin V M, Valeo E J, Martins S F and Joshi C 2009 Phys. Plasmas 16 123113 [22] Pai C H, Lin M W, Ha L C, Huang S T, Tsou Y C, Chu H H, Lin J Y, Wang J and Chen S Y 2008 Phys. Rev. Lett. 101 065005 [23] Ren J, Li S, Morozov A, Suckewer S, Yampolsky N A, Malkin V M and Fisch N J 2008 Phys. Plasmas 15 056702 [24] DuBois D F, Bezzerides B and Rose H A 1992 Phys. Fluids B 4 241 [25] Yang S J, Zhuo H B, Yin Y, Liu Z J, Zheng C Y, He X T and Xiao C Z 2020 Phys. Rev. E 102 013205 [26] Balakin A A, Fraiman G M, Fisch N J and Malkin V M 2003 Phys. Plasmas 10 4856 [27] Kirkwood R K, Turnbull D P, Chapman T, Wilks S C, Rosen M D, London R A, Pickworth L A, Dunlop W H, Moody J D, Strozzi D J, Michel P A, Divol L, Landen O L, MacGowan B J, Van Wonterghem B M, Fournier K B and Blue B E 2017 Nat. Phys. 14 80 [28] Jia Q, Shi Y, Qin H and Fisch Nathaniel J 2017 Phys. Plasmas 24 093103 [29] Chen Y, Zheng C Y, Liu Z J, Cao L H, Feng Q S and Xiao C Z 2020 Plasma Phys. Control. Fusion. 62 105020 [30] DuBois D F, Bezzerides B and Rose H A 1992 Phys. Fluids B 4 241 [31] Depierreux S, Neuville C, Baccou C, Tassin V, Casanova M, Masson-Laborde P E, Borisenko N, Orekhov A, Colaitis A, Debayle A, Duchateau G, Heron A, Huller S, Loiseau P, Nicolaï, Pesme D, Riconda C, Tran G, Bahr R, Katz J, Stoeckl C, Seka W, Tikhonchuk V and Labaune C 2016 Phys. Rev. Lett. 117 235002 [32] Michel P, Divol L, Dewald E L, Milovich J L, Hohenberger M, Jones O S, Hopkins L B, Berger R L, Kruer W L and Moody J D 2015 Phys. Rev. Lett. 115 055003 [33] Edwards M R, Jia Q, Mikhailova J M and Fisch N J 2016 Phys. Plasmas 23 083122 [34] Qu Kenan, Barth Ido and Fisch Nathaniel J 2017 Phys. Rev. Lett. 118 164801 [35] Mounaix P, Pesme D, Rozmus W and Casanova M 1993 Phys. of Fluids B 5 3304 [36] Malkin V M, Shvets G and Fisch N J 2000 Phys. Rev. Lett. 84 1208 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|