Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 126601    DOI: 10.1088/1674-1056/26/12/126601
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

A diffusion model for solute atoms diffusing and aggregating in nuclear structural materials

Quan Song(宋泉)1,2, Fan-Xin Meng(孟繁新)3, Bo-Yuan Ning(宁博元)4, Jun Zhuang(庄军)4, Xi-Jing Ning(宁西京)1,2
1. Institute of Modern Physics, Fudan University, Shanghai 200433, China;
2. Applied Ion Beam Physics Laboratory, Fudan University, Shanghai 200433, China;
3. China ZhenHua Group YongGuang Electronics Co., Ltd. (State-owned 873 Factory), Guiyang 550018, China;
4. Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China
Abstract  In nuclear structural materials, the nuclear irradiations induce the precipitations of soluble elements or produce the insoluble elements such as He atoms that may form clusters, heavily shortening the service life-times of the materials. In the present work, a diffusion model is developed to predict where and how fast the solute atoms (either soluble or insoluble) aggregate, and this model is applied to the study of the formation and growth of He bubbles in metal tritides (PdT0.6, ErT2, NbT0.0225, VT0.5, TaT0.097, TiT1.5, ZrT1.6) within one thousand days. The results are in good agreement with the available experimental observations and suggest that searching for metals with a barrier of more than 1.1 eV for a single He atom diffusion and making more defects in metal tritides can significantly reduce the growth of He bubbles and extend the service time of the metals.
Keywords:  atomistic modeling      diffusion growth      metal tritides      nucleation and growth      helium bubble  
Received:  19 June 2017      Revised:  13 September 2017      Accepted manuscript online: 
PACS:  66.30.J- (Diffusion of impurities ?)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
Fund: Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20130071110018) and the National Natural Science Foundation of China (Grant No. 11274073).
Corresponding Authors:  Xi-Jing Ning     E-mail:  xjning@fudan.edu.cn

Cite this article: 

Quan Song(宋泉), Fan-Xin Meng(孟繁新), Bo-Yuan Ning(宁博元), Jun Zhuang(庄军), Xi-Jing Ning(宁西京) A diffusion model for solute atoms diffusing and aggregating in nuclear structural materials 2017 Chin. Phys. B 26 126601

[1] Marquis E A, Hyde J M, Saxey D W, Lozano-Perez S, de Castro V, Hudson D, Williams C A, Humphry-Baker S and Smith G D W 2009 Mater. Today 12 30
[2] Bringa E M, Monk J D, Caro A, Misra A, Zepeda-Ruiz L, Duchaineau M, Abraham F, Nastasi M, Picraux S T, Wang Y Q and Farkas D 2012 Nano. Lett. 12 3351
[3] Demkowicz M J, Hoagland R G and Hirth J P 2008 Phys. Rev. Lett. 100 136102
[4] Beyerlein I J, Caro A, Demkowicz M J, Mara N A, Misra A and Uberuaga B P 2013 Mater. Today 16 443
[5] Zinkle S J and Busby J T 2009 Mater. Today 12 12
[6] English C A and Hyde J M 2003 6.08——Radiation Embrittlement of Reactor Pressure Vessel Steels, in:I.M.O.R. Karihaloo (ed.), Comprehensive Structural Integrity (Oxford:Pergamon) pp. 351-398
[7] Huang H, Tang X B, Chen F D, Liu J and Chen D 2017 J. Nucl. Mater. 493 322
[8] Kim Y, Baek J, Kim S, Kim S, Ryu S, Jeon S and Han S M 2016 Sci. Rep. 6 24785
[9] Bond G M, Browning J F and Snow C S 2010 J. Appl. Phys. 107 083514
[10] Nagai Y, Tang Z, Hassegawa M, Kanai T and Saneyasu M 2001 Phys. Rev. B 63 134110
[11] Meslin E, Radiguet B and Loyer-Prost M 2013 Acta Mater. 61 6246
[12] Jiao Z and Was G S 2011 Acta Mater. 59 1220
[13] Birtcher R C, Donnelly S E and Templier C 1994 Phys. Rev. B 50 764
[14] Knapp J A, Browning J F and Bond G M 2010 Nucl. Instrum. Method B 268 2141
[15] Zhou Y L, Deng A H, Li R S, Zhang B L and Hou Q 2011 Acta Phys. Sin. 60 046604(in Chinese)
[16] Zhou H B and Jin S 2013 Chin. Phys. B 22 76104
[17] Cheng G J, Fu B Q, Hou Q, Zhou X S and Wang J 2016 Chin. Phys. B 25 76602
[18] Lane P L and Goodhew P J 1983 Philos. Mag. A 48 965
[19] Han W Z, Demkowicz M J, Mara N A, Fu E, Sinha S, Rollett A D, Wang Y Q, Carpenter J S, Beyerlein I J and Misra A 2013 Adv. Mater. 25 6975
[20] Blaschko O, Pleschiutschnig J, Glas R and Weinzierl P 1991 Phys. Rev. B 44 9164
[21] Prem M, Krexner G and Pleschiutschnig J 2003 J. Alloys Compd. 356 683
[22] Hua J, Liu Y L, Li H S, Zhao M W and Liu X D 2016 Chin. Phys. B 25 36104
[23] Wilson W D, Bisson C L and Baskes M I 1981 Phys. Rev. B 24 5616
[24] Zhang Y F, Millett P C, Tonks M, Zhang L Z and Biner B 2012 J. Phys.-Condes. Matter 24 305005
[25] Morishita K, Sugano R and Wirth B D 2003 J. Nucl. Mater. 323 243
[26] Domain C, Becquart C S and Malerba L 2004 J. Nucl. Mater. 335 121
[27] Becquart C S and Domain C 2009 J. Nucl. Mater. 385 223
[28] Lin Z Z, Yu W F, Wang Y and Ning X J 2011 Europhys. Lett. 94 40002
[29] Yu W F, Lin Z Z and Ning X J 2013 Chin. Phys. B 22 116802
[30] Yu W F, Lin Z Z and Ning X J 2013 Phys. Rev. E 87 062311
[31] Xu Y G, Ming C, Lin Z Z, Meng F X, Zhuang J and Ning X J 2014 Carbon 73 283
[32] Lin Z Z and Chen X 2013 Europhys. Lett. 101 48002
[33] Ming C, Lin Z Z, Cao R G, Yu W F and Ning X J 2012 Carbon 50 2651
[34] Lin Z Z, Li W Y and Ning X J 2014 Chin. Phys. B 23 050501
[35] Li W Y, Lin Z Z, Xu J J and Ning X J 2012 Chin. Phys. Lett. 29 080504
[36] Li J T, Wang J L, Zhang B Q, Rong X M and Ning X J 2014 Acta Phys. Sin. 63 028101(in Chinese)
[37] Beavis L C and Miglioni C J 1972 J. Less-Common. Metals 27 201
[38] Schober T and Farrell K 1989 J. Nucl. Mater. 168 171
[39] Schober T, Trinkaus H and Lasser R 1986 J. Nucl. Mater. 141-143 453
[40] Cowgill D F 2004 Sandia National Laboratories, p. 42
[41] Thomas G J and Mintz J M 1983 J. Nucl. Mater. 116 336
[42] Thiebaut S, Decamps B, Penisson J M, Limacher B and Guegan A P 2000 J. Nucl. Mater. 277 217
[43] Snow C S, Brewer L N, Gelles D S, Rodriguez M A, Kotula P G, Banks J C, Mangan M A and Browning J F 2008 J. Nucl. Mater. 374 147
[44] Schober T, Lasser R, Jager W and Thomas G J 1984 J. Nucl. Mater. 122 571
[45] Schober T, Dieker C and Trinkaus H 1989 J. Appl. Phys. 65 117
[46] Snow C S, Browning J F, Bond G M, Rodriguez M A and Knapp J A 2014 J. Nucl. Mater. 453 296
[47] Vassen R, Trinkaus H and Jung P 1991 J. Nucl. Mater. 183 1
[48] Quijano R, de Coss R and Singh D J 2009 Phys. Rev. B 80 184103
[49] Schober T and Lasser R 1984 J. Nucl. Mater. 120 137
[50] Liang J H, Dai Y Y, Yang L, Peng S M, Fan K M, Long X G, Zhou X S, Zu X T and Gao F 2013 Comp. Mater. Sci. 69 107
[51] Schlapbach L 1988 Hydrogen in Intermetallic Compounds I (Springer)
[52] Berube V, Radtke G, Dresselhaus M and Chen G 2007 Int. J. Energy Res. 31 637
[1] Helium bubble formation and evolution in NiMo-Y2O3 alloy under He ion irradiation
Awen Liu(刘阿文), Hefei Huang(黄鹤飞), Jizhao Liu(刘继召), Zhenbo Zhu(朱振博), and Yan Li(李燕). Chin. Phys. B, 2022, 31(4): 046102.
[2] Evolution of helium bubbles in nickel-based alloy by post-implantation annealing
Rui Zhu(朱睿), Qin Zhou(周钦), Li Shi(史力), Li-Bin Sun(孙立斌), Xin-Xin Wu(吴莘馨), Sha-Sha Lv(吕沙沙), and Zheng-Cao Li(李正操). Chin. Phys. B, 2021, 30(8): 086102.
[3] In-situ TEM observation of the evolution of helium bubbles in Mo during He+ irradiation and post-irradiation annealing
Yi-Peng Li(李奕鹏), Guang Ran(冉广), Xin-Yi Liu(刘歆翌), Xi Qiu(邱玺), Qing Han(韩晴), Wen-Jie Li(李文杰), and Yi-Jia Guo(郭熠佳). Chin. Phys. B, 2021, 30(8): 086109.
[4] Effect of microstructure on 3He migration in TiT1.9 films
Haifeng Wang(王海峰), Shuming Peng(彭述明), Wei Ding(丁伟), Huahai Shen(申华海), Weidu Wang(王维笃), Xiaosong Zhou(周晓松), Xinggui Long(龙兴贵). Chin. Phys. B, 2018, 27(9): 096103.
[5] Growth mode of helium crystal near dislocations in titanium
Bao-Ling Zhang(张宝玲), Bao-Wen Wang(王保文), Xue Su(苏雪), Xiao-Yong Song(宋小勇), Min Li(李敏). Chin. Phys. B, 2018, 27(6): 060205.
[6] Atomic origins of solid helium bubbles in tungsten
Xia Min (夏敏), Guo Hong-Yan (郭洪燕), Dai Yong (戴勇), Yan Qing-Zhi (燕青芝), Guo Li-Ping (郭立平), Li Tie-Cheng (李铁成), Qiao Yi (乔祎), Ge Chang-Chun (葛昌纯). Chin. Phys. B, 2014, 23(12): 127806.
[7] Molecular dynamics study of helium bubble pressure in titanium
Zhang Bao-Ling(张宝玲), Wang Jun(汪俊), and Hou Qing(侯氢). Chin. Phys. B, 2011, 20(3): 036105.
No Suggested Reading articles found!