CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
A diffusion model for solute atoms diffusing and aggregating in nuclear structural materials |
Quan Song(宋泉)1,2, Fan-Xin Meng(孟繁新)3, Bo-Yuan Ning(宁博元)4, Jun Zhuang(庄军)4, Xi-Jing Ning(宁西京)1,2 |
1. Institute of Modern Physics, Fudan University, Shanghai 200433, China; 2. Applied Ion Beam Physics Laboratory, Fudan University, Shanghai 200433, China; 3. China ZhenHua Group YongGuang Electronics Co., Ltd. (State-owned 873 Factory), Guiyang 550018, China; 4. Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China |
|
|
Abstract In nuclear structural materials, the nuclear irradiations induce the precipitations of soluble elements or produce the insoluble elements such as He atoms that may form clusters, heavily shortening the service life-times of the materials. In the present work, a diffusion model is developed to predict where and how fast the solute atoms (either soluble or insoluble) aggregate, and this model is applied to the study of the formation and growth of He bubbles in metal tritides (PdT0.6, ErT2, NbT0.0225, VT0.5, TaT0.097, TiT1.5, ZrT1.6) within one thousand days. The results are in good agreement with the available experimental observations and suggest that searching for metals with a barrier of more than 1.1 eV for a single He atom diffusion and making more defects in metal tritides can significantly reduce the growth of He bubbles and extend the service time of the metals.
|
Received: 19 June 2017
Revised: 13 September 2017
Accepted manuscript online:
|
PACS:
|
66.30.J-
|
(Diffusion of impurities ?)
|
|
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
|
Fund: Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20130071110018) and the National Natural Science Foundation of China (Grant No. 11274073). |
Corresponding Authors:
Xi-Jing Ning
E-mail: xjning@fudan.edu.cn
|
Cite this article:
Quan Song(宋泉), Fan-Xin Meng(孟繁新), Bo-Yuan Ning(宁博元), Jun Zhuang(庄军), Xi-Jing Ning(宁西京) A diffusion model for solute atoms diffusing and aggregating in nuclear structural materials 2017 Chin. Phys. B 26 126601
|
[1] |
Marquis E A, Hyde J M, Saxey D W, Lozano-Perez S, de Castro V, Hudson D, Williams C A, Humphry-Baker S and Smith G D W 2009 Mater. Today 12 30
|
[2] |
Bringa E M, Monk J D, Caro A, Misra A, Zepeda-Ruiz L, Duchaineau M, Abraham F, Nastasi M, Picraux S T, Wang Y Q and Farkas D 2012 Nano. Lett. 12 3351
|
[3] |
Demkowicz M J, Hoagland R G and Hirth J P 2008 Phys. Rev. Lett. 100 136102
|
[4] |
Beyerlein I J, Caro A, Demkowicz M J, Mara N A, Misra A and Uberuaga B P 2013 Mater. Today 16 443
|
[5] |
Zinkle S J and Busby J T 2009 Mater. Today 12 12
|
[6] |
English C A and Hyde J M 2003 6.08——Radiation Embrittlement of Reactor Pressure Vessel Steels, in:I.M.O.R. Karihaloo (ed.), Comprehensive Structural Integrity (Oxford:Pergamon) pp. 351-398
|
[7] |
Huang H, Tang X B, Chen F D, Liu J and Chen D 2017 J. Nucl. Mater. 493 322
|
[8] |
Kim Y, Baek J, Kim S, Kim S, Ryu S, Jeon S and Han S M 2016 Sci. Rep. 6 24785
|
[9] |
Bond G M, Browning J F and Snow C S 2010 J. Appl. Phys. 107 083514
|
[10] |
Nagai Y, Tang Z, Hassegawa M, Kanai T and Saneyasu M 2001 Phys. Rev. B 63 134110
|
[11] |
Meslin E, Radiguet B and Loyer-Prost M 2013 Acta Mater. 61 6246
|
[12] |
Jiao Z and Was G S 2011 Acta Mater. 59 1220
|
[13] |
Birtcher R C, Donnelly S E and Templier C 1994 Phys. Rev. B 50 764
|
[14] |
Knapp J A, Browning J F and Bond G M 2010 Nucl. Instrum. Method B 268 2141
|
[15] |
Zhou Y L, Deng A H, Li R S, Zhang B L and Hou Q 2011 Acta Phys. Sin. 60 046604(in Chinese)
|
[16] |
Zhou H B and Jin S 2013 Chin. Phys. B 22 76104
|
[17] |
Cheng G J, Fu B Q, Hou Q, Zhou X S and Wang J 2016 Chin. Phys. B 25 76602
|
[18] |
Lane P L and Goodhew P J 1983 Philos. Mag. A 48 965
|
[19] |
Han W Z, Demkowicz M J, Mara N A, Fu E, Sinha S, Rollett A D, Wang Y Q, Carpenter J S, Beyerlein I J and Misra A 2013 Adv. Mater. 25 6975
|
[20] |
Blaschko O, Pleschiutschnig J, Glas R and Weinzierl P 1991 Phys. Rev. B 44 9164
|
[21] |
Prem M, Krexner G and Pleschiutschnig J 2003 J. Alloys Compd. 356 683
|
[22] |
Hua J, Liu Y L, Li H S, Zhao M W and Liu X D 2016 Chin. Phys. B 25 36104
|
[23] |
Wilson W D, Bisson C L and Baskes M I 1981 Phys. Rev. B 24 5616
|
[24] |
Zhang Y F, Millett P C, Tonks M, Zhang L Z and Biner B 2012 J. Phys.-Condes. Matter 24 305005
|
[25] |
Morishita K, Sugano R and Wirth B D 2003 J. Nucl. Mater. 323 243
|
[26] |
Domain C, Becquart C S and Malerba L 2004 J. Nucl. Mater. 335 121
|
[27] |
Becquart C S and Domain C 2009 J. Nucl. Mater. 385 223
|
[28] |
Lin Z Z, Yu W F, Wang Y and Ning X J 2011 Europhys. Lett. 94 40002
|
[29] |
Yu W F, Lin Z Z and Ning X J 2013 Chin. Phys. B 22 116802
|
[30] |
Yu W F, Lin Z Z and Ning X J 2013 Phys. Rev. E 87 062311
|
[31] |
Xu Y G, Ming C, Lin Z Z, Meng F X, Zhuang J and Ning X J 2014 Carbon 73 283
|
[32] |
Lin Z Z and Chen X 2013 Europhys. Lett. 101 48002
|
[33] |
Ming C, Lin Z Z, Cao R G, Yu W F and Ning X J 2012 Carbon 50 2651
|
[34] |
Lin Z Z, Li W Y and Ning X J 2014 Chin. Phys. B 23 050501
|
[35] |
Li W Y, Lin Z Z, Xu J J and Ning X J 2012 Chin. Phys. Lett. 29 080504
|
[36] |
Li J T, Wang J L, Zhang B Q, Rong X M and Ning X J 2014 Acta Phys. Sin. 63 028101(in Chinese)
|
[37] |
Beavis L C and Miglioni C J 1972 J. Less-Common. Metals 27 201
|
[38] |
Schober T and Farrell K 1989 J. Nucl. Mater. 168 171
|
[39] |
Schober T, Trinkaus H and Lasser R 1986 J. Nucl. Mater. 141-143 453
|
[40] |
Cowgill D F 2004 Sandia National Laboratories, p. 42
|
[41] |
Thomas G J and Mintz J M 1983 J. Nucl. Mater. 116 336
|
[42] |
Thiebaut S, Decamps B, Penisson J M, Limacher B and Guegan A P 2000 J. Nucl. Mater. 277 217
|
[43] |
Snow C S, Brewer L N, Gelles D S, Rodriguez M A, Kotula P G, Banks J C, Mangan M A and Browning J F 2008 J. Nucl. Mater. 374 147
|
[44] |
Schober T, Lasser R, Jager W and Thomas G J 1984 J. Nucl. Mater. 122 571
|
[45] |
Schober T, Dieker C and Trinkaus H 1989 J. Appl. Phys. 65 117
|
[46] |
Snow C S, Browning J F, Bond G M, Rodriguez M A and Knapp J A 2014 J. Nucl. Mater. 453 296
|
[47] |
Vassen R, Trinkaus H and Jung P 1991 J. Nucl. Mater. 183 1
|
[48] |
Quijano R, de Coss R and Singh D J 2009 Phys. Rev. B 80 184103
|
[49] |
Schober T and Lasser R 1984 J. Nucl. Mater. 120 137
|
[50] |
Liang J H, Dai Y Y, Yang L, Peng S M, Fan K M, Long X G, Zhou X S, Zu X T and Gao F 2013 Comp. Mater. Sci. 69 107
|
[51] |
Schlapbach L 1988 Hydrogen in Intermetallic Compounds I (Springer)
|
[52] |
Berube V, Radtke G, Dresselhaus M and Chen G 2007 Int. J. Energy Res. 31 637
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|