Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 114701    DOI: 10.1088/1674-1056/ac588a
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A study of cavitation nucleation in pure water using molecular dynamics simulation

Hua Xie(谢华)1,†, Yuequn Xu(徐跃群)1,2, and Cheng Zhong(钟成)3,‡
1 School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China;
2 Hangzhou Water Resources and Hydropower Survey and Design Institute Co., Ltd, Hangzhou 310016, China;
3 College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
Abstract  To discover the microscopic mechanism responsible for cavitation nucleation in pure water, nucleation processes in pure water are simulated using the molecular dynamics method. Cavitation nucleation is generated by uniformly stretching the system under isothermal conditions, and the formation and development of cavitation nuclei are simulated and discussed at the molecular level. The processes of energy, pressure, and density are analyzed, and the tensile strength of the pure water and the critical volume of the bubble nuclei are investigated. The results show that critical states exist in the process of cavitation nucleation. In the critical state, the energy, density, and pressure of the system change abruptly, and a stable cavitation nucleus is produced if the energy barrier is broken and the critical volume is exceeded. System pressure and water density are the key factors in the generation of cavitation nuclei. When the critical state is surpassed, the liquid is completely ruptured, and the volume of the cavitation nucleus rapidly increases to larger than 100 nm3; at this point, the surface tension of the bubble dominates the cavitation nucleus, instead of intermolecular forces. The negative critical pressure for bubble nucleation is -198.6 MPa, the corresponding critical volume is 13.84 nm3, and the nucleation rate is 2.42×1032 m-3·-1 in pure water at 300 K. Temperature has a significant effect on nucleation: as the temperature rises, nucleation thresholds decrease, and cavitation nucleation occurs earlier.
Keywords:  cavitation nucleation      pure water      molecular dynamics      tensile strength  
Received:  20 December 2021      Revised:  20 February 2022      Accepted manuscript online:  25 February 2022
PACS:  47.55.dp (Cavitation and boiling)  
  47.11.Mn (Molecular dynamics methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51779187 and 51873160).
Corresponding Authors:  Hua Xie, Cheng Zhong     E-mail:  xiehua@whu.edu.cn;zhongcheng@whu.edu.cn

Cite this article: 

Hua Xie(谢华), Yuequn Xu(徐跃群), and Cheng Zhong(钟成) A study of cavitation nucleation in pure water using molecular dynamics simulation 2022 Chin. Phys. B 31 114701

[1] Franc J P and Michel J M 2017 Fundamentals of Cavitation (Dordrecht: Springer) p. 1
[2] Skripov V P and Katz J L 1975 Phys. Today 28 57
[3] Pan S and Peng X 2013 Physical Mechanism of Cavitation (Beijing: National Defense Industry Press) p. 15 (in Chinese)
[4] Balibar S and Caupin F 2003 J. Phys.: Condens. Mat. 15 S75
[5] Brennen C E 1995 Cavitation and Bubble Dynamics (Oxford: Oxford University Press) pp. 19-22
[6] Caupin F and Herbert E 2006 C. R. Physique 7 1000
[7] Kashchiev D 2000 Nucleation: Theory and Basic Applications (Oxford: Butterworth-Heinemann) pp. 58-69
[8] Kalikmanov V I 2013 Nucleation Theory (Dordrecht: Springer) pp. 17-41
[9] Wang L P, Kong W L, Bian P X, Wang F X and Liu H 2021 Chin. Phys. B 30 068203
[10] Caupin F 2005 Phys. Rev. E 71 051605
[11] Kwak H Y and Panton R L 1983 J. Chem. Phys. 78 5795
[12] Kwak H Y and Panton R L 1985 J. Phys. D Appl. Phys. 18 647
[13] Briggs L J 1950 J. Appl. Phys. 21 721
[14] Caupin F 2015 J. Non-Cryst. Solids 407 441
[15] Gu Y W 2016 Experiments and Molecular Dynamics Simulation on Cavitation Inception in Liquid (MS dissertation) (Beijing: Tsinghua University) (in Chinese)
[16] Alder B J and Wainwright T E 1957 J. Chem. Phys. 27 1208
[17] Li J and Zhang B K 2019 Chin. Phys. B 28 126101
[18] Cui S W, Wei J A, Liu W W, Zhu R Z and Qian P 2019 Chin. Phys. B 28 016801
[19] Cui S W, Wei J A, Li Q, Liu W W, Qian P and Wang X S 2021 Chin. Phys. B 30 016801
[20] Tian X F, Long C S, Zhu Z H and Gao T 2010 Chin. Phys. B 19 057102
[21] Gong H F, Liu M, Gao F, Li R, Yan Y, Huang H, Liu T and Ren Q S 2017 Chin. Phys. B 26 113401
[22] Liu Y W and Zhang X R 2018 Chin. Phys. B 27 014401
[23] Xu D Y and Li D Y 2014 Collection in Encyclopedia of Microfluidics and Nanofluidics (Boston: Springer) pp. 1-10
[24] Zhan S, Duan H T, Pan L, Tu J, Jia D, Yang T and Li J. 2021 Phys. Chem. Chem. Phys. 23 8446
[25] Kinjo T and Matsumoto M 1998 Fluid Phase Equilibr. 144 343
[26] Sekine M, Yasuoka K, Kinjo T and Matsumoto M 2009 Fluid Dyn. Res. 40 597
[27] Tsuda S, Takagi S and Matsumoto Y 2008 Fluid Dyn. Res. 40 606
[28] Chen Y, Zou Y, Sun D, Wang Y and Yu Bo 2018 Int. J. Heat Mass Transfer 118 1143
[29] Baidakov V G and Bryukhanov V M 2018 Chem. Phys. Lett. 713 85
[30] Malyshev V L, Marin D F, Moiseeva E F, Gumerov N A and Akhatov I S 2015 High Temp. 53 406
[31] González M A, Menzl G, Aragones J L, Geiger P, Caupin F, Abascal JLF, Dellago C and Valeriani C 2014 J. Chem. Phys. 141 18C511
[32] Wang P, Gao W, Wilkerson J and Liechti KM, Huang R 2017 Extreme Mech. Lett. 11 59
[33] Liu Z, Ji C, Wang B and Sun S 2019 Micro & Nano Lett. 14 1041
[34] Li B, Gu Y and Chen M 2019 Ultrason. Sonochem. 51 120
[35] Pellegrin M, Bouret Y, Celestini F and Noblin X 2020 Langmuir 36 14181
[36] Wu Y T and Adnan A 2020 Multiscale Sci. Eng. 2 127
[37] Dockar D, Gibelli L and Borg M K 2021 Soft Matter 17 6884
[38] Woodcock L V 1971 Chem. Phys. Lett. 10 257
[39] Allen M P and Tildesley D J 2017 Computer Simulation of Liquids (Second Edition) (Oxford university Press) p. 63
[40] Verlet L 1967 Phys. Rev. 159 98
[41] Pan C 2017 A Study on Electrostatics Algorithms in Molecular Simulations (Ph.D. dissertation) (Changchun: Jilin University) (in Chinese)
[42] Wedekind J, Reguera D and Strey R 2006 J. Chem. Phys. 125 214505
[43] Hess B, Bekker H, Berendsen H J C and Fraaije J 1997 J. Comput. Chem. 18 1463
[44] Born M 1920 Z. Phys. 1 45
[45] Joegensen W L, Chandrasekhar J and Madura J D 1983 J. Chem. Phys. 79 926
[46] Berendsen H J C, Grigera J R and Straatsma T P 1987 J. Chem. Phys. 91 6269
[47] Horn H W, Swope W C, Pitera J W, Madura J D, Dick T J, Hura G L and Gordon T H 2004 J. Chem. Phys. 120 9665
[48] Mahoney M W and Jorgensen W L 2000 J. Chem. Phys. 112 8910
[49] Saeed I, Ramu A and Alexey V O 2014 J. Chem. Phys. Lett. 5 3863
[50] Wang L P, Martinez T J and Pande V S 2014 J. Phys. Chem. Lett. 5 1885
[51] Kuksin A Y, Norman G E, Pisarev V V, Stegailov V V and Yanilkin A V 2010 High Temp. 48 511
[52] Sastry S, Debenedetti P G and Stillinger F H 1997 Phys. Rev. E 56 5533
[53] Neimark A V and Vishnyakov A 2005 J. Chem. Phys. 122 054707
[54] Abascal J L F, Gonzalez M A, Aragones J L and Valeriani C 2013 J. Chem. Phys. 138 084508
[55] Rycroft C H 2009 Chaos 19 041111
[56] Berendsen H J C, Postma J P M, Van Gunsteren W F, DiNola A and Haak J R 1984 J. Chem. Phys. 81 3684
[57] Amini M, Eastwood J W and Hockney R W 1987 Comput. Phys. Commun. 44 83
[58] Reguera D, Rubi J M and Pérez-Madrid A 1998 Physica A 259 10
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[11] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[12] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[13] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[14] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[15] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
No Suggested Reading articles found!