INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Depth-dependent mosaic tilt and twist in GaN epilayer:An approximate evaluation |
Zhang Jin-Feng (张金风), Nie Yu-Hu (聂玉虎), Zhou Yong-Bo (周勇波), Tian Kun (田坤), Ha Wei (哈微), Xiao Ming (肖明), Zhang Jin-Cheng (张进成), Hao Yue (郝跃) |
School of Microelectronics, Key Laboratory of Wide Bandgap Semiconductor Materials and Devices of Ministry of Education, Xidian University, Xi'an 710071, China |
|
|
Abstract An approach based on depth-sensitive skew-angle x-ray diffraction (SAXRD) is presented for approximately evaluating the depth-dependent mosaic tilt and twist in wurtzite c-plane GaN epilayers. It is found that (103) plane and (101) plane, among the lattice planes not perpendicular to the sample surface, are the best choices to measure the depth profiles of tilt and twist for a GaN epilayer with a thickness of less than 2 μm according to the diffraction geometry of SAXRD. As an illustration, the depth-sensitive (103)/(101) ω -scans of a 1.4-μm GaN film grown by metal-organic chemical vapor deposition on sapphire substrate are measured and analyzed to show the feasibility of this approach.
|
Received: 21 December 2013
Revised: 17 February 2014
Accepted manuscript online:
|
PACS:
|
81.05.Ea
|
(III-V semiconductors)
|
|
61.72.Dd
|
(Experimental determination of defects by diffraction and scattering)
|
|
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 61306017 and 61204006), the Key Program of the National Natural Science Foundation of China (Grant No. 61334002), and the Fundamental Research Funds for the Central Universities of China (Grant Nos. K5051225016 and K5051325020). |
Corresponding Authors:
Zhang Jin-Feng
E-mail: jfzhang@xidian.edu.cn
|
Cite this article:
Zhang Jin-Feng (张金风), Nie Yu-Hu (聂玉虎), Zhou Yong-Bo (周勇波), Tian Kun (田坤), Ha Wei (哈微), Xiao Ming (肖明), Zhang Jin-Cheng (张进成), Hao Yue (郝跃) Depth-dependent mosaic tilt and twist in GaN epilayer:An approximate evaluation 2014 Chin. Phys. B 23 068102
|
[1] |
Moram M A and Vickers M E 2009 Rep. Prog. Phys. 72 036502
|
[2] |
Xu Z J 2007 Semiconductor Characterization and Analysis, 2nd edn. (Beijing: Science Press) p. 160 (in Chinese)
|
[3] |
Lin Z Y, Zhang J C, Zhou H, Li X G, Meng F N, Zhang L X, Ai S, Xu S R, Zhao Y and Hao Y 2012 Chin. Phys. B 21 126804
|
[4] |
Xue J S, Hao Y, Zhang J C and Ni J Y 2010 Chin. Phys. B 19 057203
|
[5] |
Oehler F, Zhu T, Rhode S, Kappers M J, Humphreys C J and Oliver R A 2013 J. Cryst. Growth 383 12
|
[6] |
Suihkonen S, Ali M, Torma P T, Sintonen S, Svensk O, Sopanen M, Lipsanen H, Nevedomsky V N and Bert N A 2013 Jpn. J. Appl. Phys. 52 01AF01
|
[7] |
Barchuk M, Roder C, Shashev Y, Lukin G, Motylenko M, Kortus J, Patzold O and Rafaja D 2014 J. Cryst. Growth 386 1
|
[8] |
Li L, Yang L A, Cao R, Xu S R, Zhou X, Xue J, Lin Z, Ha W, Zhang J and Hao Y 2014 J. Cryst. Growth 387 1
|
[9] |
Gao Z Y, Hao Y, Zhang J C, Li P X and Gu W P 2009 Chin. Phys. B 18 4970
|
[10] |
Wang M J, Shen B, Xu F J, Wang Y, Xu J, Huang S, Yang Z J, Qin Z X and Zhang G Y 2007 Chin. Phys. Lett. 24 1682
|
[11] |
Otoki Y, Tanaka T, Kamogawa H, Kaneda N, Mishima T, Honda U and Tokuda Y 2013 28th International Conference on Compound Semiconductor Manufacturing Technology, New Orleans, LA, USA p. 109
|
[12] |
Killat N, Bajo M M, Paskova T, Evans K R, Leach J, Li X, Ozgur U, Morkoc H, Chabak K D, Crespo A, Gillespie J K, Fitch R, Kossler M, Walker D E, Trejo M, Via G D, Blevins J D and Kuball M 2013 Appl. Phys. Lett. 103 193507
|
[13] |
Lyons M H and Halliwell M A G 1985 Proceedings of the Royal Microscopical Society Conference (Bristol, UK: Adam Hilger) p. 445
|
[14] |
Miles S J, Green G S, Tanner B K, Halliwell M A G and Lyons M H 1989 Mater. Res. Soc. Symp. Proc. 138 539
|
[15] |
Itoh N 1993 Appl. Phys. Lett. 62 690
|
[16] |
Reiher A, Blasing J, Dadgar A and Krost A 2004 Appl. Phys. Lett. 84 3537
|
[17] |
Srikant V, Speck J S and Clarke D R 1997 J. Appl. Phys. 82 4286
|
[18] |
Shen X Q, Matsuhata H and Okumura H 2005 Appl. Phys. Lett. 86 021912
|
[19] |
Xu Z H, Zhang J C, Zhang Z F, Zhu Q W, Duan H T and Hao Y 2009 Chin. Phys. B 18 5457
|
[20] |
McAleese C, Kappers M J, Rayment F D G, Cherns P and Humphyreys C J 2004 12th International Conference on Metalorganic Vapor Phase Epitaxy (Netherlands: Elsevier) 272 475
|
[21] |
Cao Y and Jena D 2007 Appl. Phys. Lett. 90 182112
|
[22] |
Norman C E, Hogg R A, Shields A J and Iizuka N 1999 3rd International Conference on Nitride Semiconductors (Germany: Akademie Verlag) 216 375
|
[23] |
Liu X W, Hopgood A A, Usher B F, Wang H and Braithwaite N S 2000 J. Appl. Phys. 88 5975
|
[24] |
Floro J A, Follstaedt D M, Provencio P, Hearne S J and Lee S R 2004 J. Appl. Phys. 96 7087
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|