Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 068101    DOI: 10.1088/1674-1056/23/6/068101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Near field enhancement and absorption properties of the double cylindrical microcavities based on triple-band metamaterial absorber

Heng Hang (衡航)a b, Yang Li (杨理)a
a Department of Physics, Nanjing Normal University, Nanjing 210097, China;
b Center for Analysis and Testing, Nanjing Normal University, Nanjing 210097, China
Abstract  We numerically study the near field enhancement and absorption properties inside the double cylindrical microcavities based on triple-band metamaterial absorber. The compact single unit cell consists of concentric gold rings each with a gold disk in the center, and a metallic ground plane separated by a dielectric layer. At the normal incidence of electromagnetic radiation, the obtained reflection spectra show that the resonance frequencies of the double microcavities are 16.65 THz, 20.65 THz, and 25.65THz, respectively. We also calculate the values of contrast C (C=1-Rmin), which can reach 95%, 97%, and 95% at the corresponding frequencies by optimizing the geometry parameters of structure. Moreover, we demonstrate that the multilayer structure with subwavelength electromagnetic confinement allows 104~105-fold enhancement of the electromagnetic energy density inside the double cavities, which contains the most energy of the incoming electromagnetic radiation. Moreover, the proposed structure will be insensitive to the polarization of the incident wave due to the symmetry of the double cylindrical microcavities. The proposed optical metamaterial is a promising candidate as an absorbing element in scientific and technical applications because of its extreme confinement, multiband absorptions, and polarization insensitivity.
Keywords:  metamaterial      metal-semiconductor-metal      microcavity      absorption  
Received:  12 November 2013      Revised:  16 December 2013      Accepted manuscript online: 
PACS:  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  42.55.Sa (Microcavity and microdisk lasers)  
  73.40.Sx (Metal-semiconductor-metal structures)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Corresponding Authors:  Heng Hang     E-mail:  40383@njnu.edu.cn

Cite this article: 

Heng Hang (衡航), Yang Li (杨理) Near field enhancement and absorption properties of the double cylindrical microcavities based on triple-band metamaterial absorber 2014 Chin. Phys. B 23 068101

[1] Jiang Z H, Yun S, Toor F, Werner D H and Mayer T S 2011 ACS Nano. 5 4641
[2] Shi X Z, Shen C M, Wang D K, Li C, Tian Y, Xu Z C, Wang C M and Gao H J 2011 Chin. Phys. B 20 076103
[3] Du C L, Du C J, You Y M, Zhu Y, Jin S L, He C J and Shi D N 2011 Appl. Opt. 50 4922
[4] Nishijima Y, Nigorinuma H, Rosa L and Juodkazis S 2012 Opt. Mater. Express 2 1367
[5] Schwarz I, Livneh N and Rapaport R 2012 Opt. Express 20 426
[6] He M D, Ma W G and Wang X J 2013 Chin. Phys. B 22 114201
[7] Christensen J, Martin-Moreno L and Garcia-Vidal F J 2010 Phys. Rev. B 81 174104
[8] Lai W C, Chakravarty S, Zou Y and Chen R T 2012 Opt. Lett. 37 1208
[9] Peng P, Huang H, Hu A, Gerlich A P and Zhou Y N 2012 J. Mater. Chem. 22 12997
[10] He X J, Wang Y, Mei J S, Gui T L and Yin J H 2012 Chin. Phys. B 21 044101
[11] Rakhmanov A L, Yampol'skii V A, Fan J A, Capasso F and Nori F 2010 Phys. Rev. B 81 07501
[12] Kocaman S, Aras M S, Hsieh P, McMillan J F, Biris C G, Panoiu N C, Yu M B, Kwong D L, Stein A and Wong C W 2011 Nat. Photon. 5 499
[13] Zimmermann B, Muller T, Meineke J, Esslinger T and Moritz H 2011 New J. Phys. 13 043007
[14] Yuk J M, Park J and Ercius P 2012 Science 336 61
[15] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[16] Liu H and Lalanne P 2008 Nature 452 728
[17] Hibbins A P and Sambles J R 2004 Phys. Rev. Lett. 92 147401
[18] Farahani J N, Eisler H J, WPohl D, Pavius M, Fluckiger P, Gasser P and Hecht B 2007 Nanotechnology 18 125506
[19] Curto A G, Volpe G, Taminiau T H, Kreuzer M P, Quidant R and Van-Hulst N F 2010 Science 329 930
[20] Fevillet-Palma C, Todorow Y, Vasanelli A and Sirtori C 2013 Sci. Rep. 3 1361
[21] Fevillet-Palma C, Todorov Y, Steed R, Vasanelli A, Biasiol G, Sorba L and Sirtori C 2012 Opt. Express 20 29121
[22] Liao P F and Wokaun A 1982 J. Chem. Phys. 76 751
[23] Shen X P, Cui T J, Zhao J, Ma H F, Jiang W X and Li H 2011 Opt. Express. 19 9401
[24] Ding P, Liang E J, Zhang L, Zhou Q and Yuan Y X 2009 Phys. Rev. E 79 016604
[1] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[2] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[3] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[4] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[5] Giant saturation absorption of tungsten trioxide film prepared based on the seedless layer hydrothermal method
Xiaoguang Ma(马晓光), Fangzhen Hu(胡芳珍), Xi Chen(陈希), Yimeng Wang(王艺盟), Xiaojian Hao(郝晓剑), Min Gu(顾敏), and Qiming Zhang(张启明). Chin. Phys. B, 2023, 32(3): 034212.
[6] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[7] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[8] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[9] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[10] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[11] Laser shaping and optical power limiting of pulsed Laguerre-Gaussian laser beams of high-order radial modes in fullerene C60
Jie Li(李杰), Wen-Hui Guan(管文慧), Shuo Yuan(袁烁), Ya-Nan Zhao(赵亚男), Yu-Ping Sun(孙玉萍), and Ji-Cai Liu(刘纪彩). Chin. Phys. B, 2023, 32(2): 024203.
[12] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[13] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[14] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[15] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
No Suggested Reading articles found!