Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 068103    DOI: 10.1088/1674-1056/23/6/068103
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Evolution of magnetic domain structure of martensite in Ni-Mn-Ga films under the interplay of the temperature and magnetic field

Xie Ren (谢忍)a, Wei Jun (韦俊)a, Liu Zhong-Wu (刘仲武)b, Tang Yan-Mei (唐妍梅)a, Tang Tao (唐涛)a, Tang Shao-Long (唐少龙)a, Du You-Wei (都有为)a
a National Laboratory of Microstructures, Jiangsu Provincial Laboratory for Nanotechnology and Department of Physics, Nanjing University, Nanjing 210093, China;
b School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
Abstract  Ferromagnetic shape memory Ni-Mn-Ga films with 7M modulated structure were prepared on MgO (001) substrates by magnetron sputtering. Magnetization process with a typical two-hysteresis loop indicates the occurrence of the reversible magnetic field-induced reorientation. Magnetic domain structure and twin structure of the film were controlled by the interplay of the magnetic and temperature field. With cooling under an out-of-plane magnetic field, the evolution of magnetic domain structure reveals that martensitic transformation could be divided into two periods: nucleation and growth. With an in-plane magnetic field applied to a thermomagnetic-treated film, the evolution of magnetic domain structure gives evidence of a reorientation of twin variants of martensite. A microstructural model is described to define the twin structure and to produce the magnetic domain structure at the beginning of martensitic transformation; based on this model, the relationship between the twin structure and the magnetic domain structure for the treated film under an in-plane field is also described.
Keywords:  Ni-Mn-Ga film      martensitic transformation      magnetically induced reorientation      magnetic domain structure  
Received:  18 October 2013      Revised:  18 February 2013      Accepted manuscript online: 
PACS:  81.40.-z (Treatment of materials and its effects on microstructure, nanostructure, And properties)  
  75.70.Kw (Domain structure (including magnetic bubbles and vortices))  
  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
  75.80.+q (Magnetomechanical effects, magnetostriction)  
Fund: Project supported by the National Key Project of Fundamental Research of China (Grant No. 2012CB932304), the National Natural Science Foundation of China (Grant No. 50831006), and the Program for New Century Excellent Talents in University (Grant No. NCET-11-0156), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
Corresponding Authors:  Tang Shao-Long     E-mail:  tangsl@nju.edu.cn

Cite this article: 

Xie Ren (谢忍), Wei Jun (韦俊), Liu Zhong-Wu (刘仲武), Tang Yan-Mei (唐妍梅), Tang Tao (唐涛), Tang Shao-Long (唐少龙), Du You-Wei (都有为) Evolution of magnetic domain structure of martensite in Ni-Mn-Ga films under the interplay of the temperature and magnetic field 2014 Chin. Phys. B 23 068103

[1] Ullakko K, Huang J K, Kantner C and O'Handley R C 1996 Appl. Phys. Lett. 69 1966
[2] Murray S J, Marioni M, Allen S M, O'Handley R C and Lograsso T A 2000 Appl. Phys. Lett. 77 886
[3] Sozinov A, Lanska N, Soroka A and Zou W 2013 Appl. Phys. Lett. 102 021902
[4] Sozinov A, Likhachev A A and Ullakko K 2002 IEEE Trans. Magn. 38 2814
[5] Pons J, Chernenko V A, Santamarta R and Cesari E 2000 Acta Mater. 48 3027
[6] Liu Z H and Ma X Q 2012 Acta Phys. Sin. 61 028103 (in Chinese)
[7] David D C and Müllner P 2011 Adv. Mater. 23 216
[8] Zeng M, Or S W, Zhu Z Y and Ho S L 2010 J. Appl. Phys. 108 051716
[9] Heczko O, Thomas M, Buschbeck J, Schultz L and Fähler S 2008 Appl. Phys. Lett. 92 072502
[10] Thomas M, Heczko O, Buschbeck J, Rößler U K, McCord J, Scheerbaum N, Schultz L and Fähler S 2008 New J. Phys. 10 023040
[11] Zhang Y P, Hughes R A, Britten J F, Preston J S, Botton G A and Niewczas M 2010 Phys. Rev. B 81 054406
[12] Yeduru S R, Backen A, Kübel C, Wang D, Scherer T, Fähler S, Schultz L and Kohl M 2012 Scr. Mater. 66 566
[13] Heczko O, Straka L, Lanska N, Ullakko K and Enkovaara J 2002 J. Appl. Phys. 91 8228
[14] Chernenko V A, Anton R L, Kohl M, Ohtsuka M, Orue I and Barandiaran J M 2005 J. Phys: Condens. Matter 17 5215
[15] Chernenko V A, Anton R L, Barandiaran J M, Orue I, Besseghini S, Ohtsuka M and Gambardella A 2008 IEEE Trans. Magn. 44 3040
[16] Buschbeck J, Niemann R, Heczko O, Thomas M, Schultz L and Fähler S 2009 Acta Mater. 57 2516
[17] Eichhorn T, Hausmanns R and Jakob G 2011 Acta Mater. 59 5067
[18] Tillier J, Bourgault D, Barbara B, Pairis S, Porcar L, Chometon P, Dufeu D, Caillault N and Carbone L 2010 J. Alloys Compd. 489 509
[19] Wang H B, Liu C, Lei Y C and Cai W 2008 J. Alloys Compd. 465 458
[20] Lai Y W, Schäfer R, Schultz L and McCord J 2010 Appl. Phys. Lett. 96 022507
[21] Reinhold M, Watson C, Knowlton W B and Müllner P 2010 J. Appl. Phys. 107 113501
[22] Bhattacharya K, Purohit P and Craciun B 2003 J. Phys. IV France 112 163
[23] Pan Q and James R D 2000 J. Appl. Phys. 87 4702
[24] Liu C, Mu H W, Gao L X, Ma W J, An X, Gao Z Y and Cai W 2010 Appl. Surf. Sci. 256 6655
[25] Wang J M, Wang Y F, Jiang C B and Xu H B 2006 Chin. Phys. Lett. 23 1293
[1] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[2] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[3] High temperature strain glass in Ti-Au and Ti-Pt based shape memory alloys
Shuai Ren(任帅), Chang Liu(刘畅), and Wei-Hua Wang(汪卫华). Chin. Phys. B, 2021, 30(1): 018101.
[4] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[5] Elastocaloric effect and mechanical behavior for NiTi shape memory alloys
Min Zhou(周敏), Yu-Shuang Li(李玉霜), Chen Zhang(张晨), Lai-Feng Li(李来风). Chin. Phys. B, 2018, 27(10): 106501.
[6] Large elastocaloric effect in Ti-Ni shape memory alloy below austenite finish temperature
Xiao-Hua Luo(罗小华), Wei-Jun Ren(任卫军), Wei Jin(金伟), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2017, 26(3): 036501.
[7] Effect of Sb-doping on martensitic transformation and magnetocaloric effect in Mn-rich Mn50Ni40Sn10-xSbx (x=1, 2, 3, and 4) alloys
Ishfaq Ahmad Shah, Najam ul Hassan, Jun Liu(刘俊), Yuanyuan Gong(龚元元), Guizhou Xu(徐桂舟), Feng Xu(徐锋). Chin. Phys. B, 2017, 26(1): 017501.
[8] Magnetic and mechanical properties of Ni–Mn–Ga/Fe–Ga ferromagnetic shape memory composite
Tan Chang-Long (谭昌龙), Zhang Kun (张琨), Tian Xiao-Hua (田晓华), Cai Wei (蔡伟). Chin. Phys. B, 2015, 24(5): 057502.
[9] Electronic structures and magnetisms of the Co2TiSb1-xSnx (x=0, 0.25, 0.5) Heusler alloys: A theoretical study of the shape-memory behavior
Wang Li-Ying (王立英), Dai Xue-Fang (代学芳), Wang Xiao-Tian (王啸天), Lin Ting-Ting (林婷婷), Chen Lei (陈磊), Liu Ran (刘然), Cui Yu-Ting (崔玉亭), Liu Guo-Dong (刘国栋). Chin. Phys. B, 2015, 24(12): 126201.
[10] Relation between martensitic transformation temperature range and lattice distortion ratio of NiMnGaCoCu Heusler alloys
Wei Jun (韦俊), Xie Ren (谢忍), Chen Le-Yi (陈乐易), Tang Yan-Mei (唐研梅), Xu Lian-Qiang (许连强), Tang Shao-Long (唐少龙), Du You-Wei (都有为). Chin. Phys. B, 2014, 23(4): 048107.
[11] Pressure effects on magnetic properties and martensitic transformation of Ni–Mn–Sn magnetic shape memory alloys
Zhang Ya-Zhuo (张雅卓), Cao Jia-Mu (曹伽牧), Tan Chang-Long (谭昌龙), Cao Yi-Jiang (曹一江), Cai Wei (蔡伟). Chin. Phys. B, 2014, 23(3): 037504.
[12] Effects of Cu on the martensitic transformation and magnetic properties of Mn50Ni40In10 alloy
Li Ge-Tian (李歌天), Liu Zhu-Hong (柳祝红), Meng Fan-Yan (孟凡研), Ma Xing-Qiao (马星桥), Wu Guang-Heng (吴光恒). Chin. Phys. B, 2013, 22(12): 126201.
[13] Transformation behaviors, structural and magnetic characteristics of Ni–Mn–Ga films on MgO (001)
Xie Ren (谢忍), Tang Shao-Long (唐少龙), Tang Yan-Mei (唐妍梅), Liu Xiao-Chen (刘枭辰), Tang Tao (唐涛), Du You-Wei (都有为). Chin. Phys. B, 2013, 22(10): 107502.
[14] The effect of Fe on the martensitic transformation of TaRu high-temperature shape memory alloys:A first-principles study
Tan Chang-Long(谭昌龙), Tian Xiao-Hua (田晓华), and Cai Wei(蔡伟) . Chin. Phys. B, 2012, 21(5): 057105.
[15] The effect of Si content on the martensitic transfor-mation temperature of Ni55.5e18Ga26.5–xSix alloys
Shen Hua-Hai(申华海), Yu Hua-Jun(余华军), Fu Hao(付浩), Guo Yuan-Jun(郭袁俊), Fu Yong-Qing(傅永庆), and Zu Xiao-Tao(祖小涛) . Chin. Phys. B, 2011, 20(4): 046102.
No Suggested Reading articles found!