CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Resonant tunneling through double-barrier structures on graphene |
Deng Wei-Yin (邓伟胤)a, Zhu Rui (朱瑞)a, Xiao Yun-Chang (肖运昌)b, Deng Wen-Ji (邓文基)a |
a Department of Physics, South China University of Technology, Guangzhou 510640, China; b LQIT, ICMP and SPTE, South China Normal University, Guangzhou 510006, China |
|
|
Abstract Quantum resonant tunneling behaviors of double-barrier structures on graphene are investigated under the tight-binding approximation. The Klein tunneling and resonant tunneling are demonstrated for the quasiparticles with energy close to the Dirac points. The Klein tunneling vanishes by increasing the height of the potential barriers to more than 300 meV. The Dirac transport properties continuously change to the Schrödinger ones. It is found that the peaks of resonant tunneling approximate to the eigen-levels of graphene nanoribbons under appropriate boundary conditions. A comparison between the zigzag- and armchair-edge barriers is given.
|
Received: 05 July 2013
Revised: 06 August 2013
Accepted manuscript online:
|
PACS:
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
73.23.Ad
|
(Ballistic transport)
|
|
73.40.Gk
|
(Tunneling)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11004063) and the Fundamental Research Funds for the Central Universities, China (Grant No. 2012ZZ0076). |
Corresponding Authors:
Deng Wen-Ji
E-mail: phwjdeng@scut.edu.cn
|
Cite this article:
Deng Wei-Yin (邓伟胤), Zhu Rui (朱瑞), Xiao Yun-Chang (肖运昌), Deng Wen-Ji (邓文基) Resonant tunneling through double-barrier structures on graphene 2014 Chin. Phys. B 23 017202
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[2] |
Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
|
[3] |
Sarma S D, Adam S, Hwang E H and Rossi E 2011 Rev. Mod. Phys. 83 407
|
[4] |
Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
|
[5] |
Tworzydlo J, Trauzettel B, Titov M, Rycerz A and Beenakker C W J 2006 Phys. Rev. Lett. 96 246802
|
[6] |
Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
|
[7] |
Nomura K and MacDonald A H 2006 Phys. Rev. Lett. 96 256602
|
[8] |
Brey L and Fertig H A 2006 Phys. Rev. B 73 195408
|
[9] |
Tworzydlo J, Trauzettel B, Titov M, Rycerz A and Beenakker C W J 2006 Phys. Rev. Lett. 96 246802
|
[10] |
Zhu R and Guo Y 2007 Appl. Phys. Lett. 91 252113
|
[11] |
DiCarlo L, Williams J R, Zhang Y M, McClure D T and Marcus C M 2008 Phys. Rev. Lett. 100 156801
|
[12] |
Zhu R and Chen H 2009 Appl. Phys. Lett. 95 122111
|
[13] |
Zhu R and Lai M L 2011 J. Phys.: Condens. Matter 23 455302
|
[14] |
Prada E, San-Jose P and Schomerus H 2009 Phys. Rev. B 80 245414
|
[15] |
Beenakker C W J 2006 Phys. Rev. Lett. 97 067007
|
[16] |
Beenakker C W J 2008 Rev. Mod. Phys. 80 1337
|
[17] |
Cheng S G, Xing Y, Wang J and Sun Q F 2009 Phys. Rev. Lett. 103 167003
|
[18] |
Cheng S G, Zhang H and Sun Q F 2011 Phys. Rev. B 83 235403
|
[19] |
Schelter J, Trauzettel B and Recher P 2012 Phys. Rev. Lett. 108 106603
|
[20] |
Wang X R, Ouyang Y J, Li X L, Wang H L, Guo J and Dai H J 2008 Phys. Rev. Lett. 100 206803
|
[21] |
Cayssol J, Huard B and Goldhaber-Gordon D 2009 Phys. Rev. B 79 075428
|
[22] |
Zhao J, Zhang G Y and Shi D X 2013 Chin. Phys. B 22 057701
|
[23] |
Wang X, Zhi L J and Müllen K 2008 Nano Lett. 8 323
|
[24] |
Benjamin C and Pachos J K 2008 Phys. Rev. B 78 235403
|
[25] |
Veldhorst M and Brinkman A 2010 Phys. Rev. Lett. 105 107002
|
[26] |
Bai C X and Zhang X D 2007 Phys. Rev. B 76 075430
|
[27] |
Pereira J M, Vasilopoulos Jr P and Peeters F M 2007 Appl. Phys. Lett. 90 132122
|
[28] |
Ramezani Masir M, Vasilopoulos P, Matulis A and Peeters F M 2008 Phys. Rev. B 77 235443
|
[29] |
Barbier M, Vasilopoulos P and Peeters F M 2009 Phys. Rev. B 80 205415
|
[30] |
Wang L G and Zhu S Y 2010 Phys. Rev. B 81 205444
|
[31] |
Guo X X, Liu D and Li Y X 2011 Appl. Phys. Lett. 98 242101
|
[32] |
Reich S, Maultzsch J and Thomsen C 2002 Phys. Rev. B 66 035412
|
[33] |
Deng W Y, Zhu R and Deng W J 2013 Acta Phys. Sin. 62 067301 (in Chinese)
|
[34] |
Brey L and Fertig H A 2006 Phys. Rev. B 73 235411
|
[35] |
Zheng H X, Wang Z F, Luo T, Shi Q W and Chen J 2007 Phys. Rev. B 75 165414
|
[36] |
Landauer R 1957 IBM J. Res. Dev. 1 223
|
[37] |
Büttiker M 1993 J. Phys.: Condens. Matter 5 9361
|
[38] |
Christen T and Büttiker M 1996 Phys. Rev. Lett. 77 143
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|