CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Theoretical study of thermoelectric properties of MoS2 |
Guo Huai-Hong (郭怀红), Yang Teng (杨腾), Tao Peng (陶鹏), Zhang Zhi-Dong (张志东) |
Shenyang National Laboratory for Materials Science, Institute of Metal Research and International Center for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, China |
|
|
Abstract We systematically studied the thermoelectric properties of MoS2 with doping based on the Boltzmann transport theory and first-principles calculations. We obtained an optimal doping region (around 1019 cm-3) for thermoelectric properties along in-plane and cross-plane directions. MoS2 in the optimal doping region has a vanishingly small anisotropy of thermopower possibly due to the decoupling of in-plane and cross-plane conduction channels, but big anisotropies of electrical conductivity σ and electronic thermal conductivity κe arising from the anisotropic electronic scattering time. The κe is comparable to the lattice counterpart κl in the plane, while κl dominates over κe across the plane. The figure of merit ZT can reach 0.1 at around 700 K with in-plane direction preferred by doping.
|
Received: 12 August 2013
Revised: 26 September 2013
Accepted manuscript online:
|
PACS:
|
72.20.Pa
|
(Thermoelectric and thermomagnetic effects)
|
|
72.80.Ga
|
(Transition-metal compounds)
|
|
31.15.A-
|
(Ab initio calculations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11004201 and 51331006), the National Basic Research Program of China (Grant No. 2012CB933103), and the IMR SYNL-Young Merit Scholars and T. S. Kê Research Grant, China. |
Corresponding Authors:
Yang Teng
E-mail: yangteng@imr.ac.cn
|
Cite this article:
Guo Huai-Hong (郭怀红), Yang Teng (杨腾), Tao Peng (陶鹏), Zhang Zhi-Dong (张志东) Theoretical study of thermoelectric properties of MoS2 2014 Chin. Phys. B 23 017201
|
[1] |
Rapoport L, Bilik Y, Feldman Y, Homyonfer M, Cohen S R and Tenne R 1997 Nature 387 791
|
[2] |
Martin J M, Donnet C and Mogne T L 1993 Phys. Rev. B 48 10583
|
[3] |
Gates B C 1992 Catalytic Chemistry (New York: Wiley) p. 1
|
[4] |
Zong X, Yan H J, Wu G P, Ma G J, Wen F Y, Wang L and Li C 2008 J. Am. Chem. Soc. 130 7176
|
[5] |
McGovern I T, Dietz E, Rotermund H H, Bradshaw A M, Braun W, Radlik W and McGilp J F 1985 Surf. Sci. 152–153 1203
|
[6] |
Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nature Nanotechnol. 6 147
|
[7] |
Li Y B, Bando Y and Golberg D 2003 Appl. Phys. Lett. 82 1962
|
[8] |
Gourmelon E, Lignierb O, Hadoudaa H, Couturierb G, Bern’edea J C, Teddb J, Pouzeta J and Salardenneb J 1997 Sol. Energy Mater. Sol. Cells 46 115
|
[9] |
Chen J, Kuriyama N, Yuan H T, Takeshita H T and Sakai T 2001 J. Am. Chem. Soc. 123 11813
|
[10] |
Xiao J, Choi D, Cosimbescu L, Koech P, Liu J and Lemmon J P 2010 Chem. Mater. 22 4522
|
[11] |
Mak K F, Lee C G, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
|
[12] |
Lee C G, Yan H G, Brus L E, Heinz T F, Hone J and Ryu S 2011 ACS Nano 4 2695
|
[13] |
Ataca C, Topsakal M, Aktürk E and Ciraci S 2011 J. Phys. Chem. C 115 16354
|
[14] |
Chiritescu C, Cahill D G, Nguyen N, Johnson D, Bodapati A, Keblinski P and Zschack P 2007 Science 315 351
|
[15] |
Kim J Y, Choi S M, Seo W S and Cho W S 2010 Bull. Korean Chem. Soc. 31 3225
|
[16] |
Thakurta S R G and Dutta A K 1983 J. Phys. Chem. Solids 44 407
|
[17] |
Mansfield R and Salam S A 1953 Proc. Phys. Soc. B 66 377
|
[18] |
Agarwal M K and Talele L T 1986 Sol. State Comm. 59 549
|
[19] |
Guo H H, Yang T, Tao P, Wang Y and Zhang Z D 2013 J. Appl. Phys. 113 013709
|
[20] |
Mahan G D 1998 Solid State Physics Vol. 51 (Ehrenreich H and Saepen F, ed.) (San Diego: Academic Press) pp. 82–152
|
[21] |
Hu H, Cai J M, Zhang C D, Gao M, Pan Y, Du S X, Sun Q F, Niu Q, Xie X C and Gao H J 2010 Chin. Phys. B 19 037202
|
[22] |
Sun Y, Wang C L, Wang H C, Su W B, Liu J, Peng H and Mei L M 2011 Acta Phys. Sin. 60 087204 (in Chinese)
|
[23] |
Li P C, Yang H S, Li Z Q, Chai Y S and Cao L Z 2002 Chin. Phys. 11 282
|
[24] |
Wang H C, Wang C L, Su W B, Liu J, Sun Y, Peng H, Zhang J L, Zhao M L, Li J C, Yin N and Mei L M 2009 Chin. Phys. Lett. 26 107301
|
[25] |
Blaha P, Schwarz K, Madsen G, Kvasnicka D and Luitz J 2011 WIEN2k: An augmented plane wave plus local orbitals program for calculating crystal properties (TU Vienna, Vienna)
|
[26] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[27] |
Engel E and Vosko S H 1993 Phys. Rev. B 47 13164
|
[28] |
Coehoorn R, Haas C, Dijkstra J and Flipse C J F 1987 Phys. Rev. B 35 6195
|
[29] |
Madsen G K H, Schwarz K, Blaha P and Singh D J 2003 Phys. Rev. B 68 125212
|
[30] |
Wu Y D, He Y J and Wang Z M 2004 Chin. Phys. 21 1848
|
[31] |
Parker D, Du M H and Singh D J 2011 Phys. Rev. B 83 245111
|
[32] |
Zhang L and Singh D J 2009 Phys. Rev. B 80 075117
|
[33] |
Han S W, Kwon H, Kim S K, Ryu S, Yun W S, Kim D H, Hwang J H, Kang J S, Baik J, Shin H J and Hong S C 2011 Phys. Rev. B 84 045409
|
[34] |
Kam K K and Parkinson B A 1982 J. Phys. Chem. 86 463
|
[35] |
Rowe D M and Min G 1995 J. Mater. Sci. Lett. 14 617
|
[36] |
Zhang Y, Ke X Z, Chen C F, Yang J H and Kent P R C 2011 Phys. Rev. Lett. 106 206601
|
[37] |
Snyder G J and Toberer E S 2008 Nature Mater. 7 105
|
[38] |
Ong K P, Singh D J and Wu P 2010 Phys. Rev. Lett. 104 176601
|
[39] |
Ong K P, Zhang J, Tse J S and Wu P 2010 Phys. Rev. B 81 115120
|
[40] |
Tang G D, Guo H H, Yang T, Zhang D W, Xu X N, Wang L Y, Wang Z H, Wen H H, Zhang Z D and Du Y W 2011 Appl. Phys. Lett. 98 202109
|
[41] |
Ziman J M 1972 Principles of the Theory of Solids (2nd edn.) (Cambridge: Cambridge University Press) p. 228
|
[42] |
Varshneya V, Patnaikc S S, Muratorea C, Roya A K, Voevodina A A and Farmera B L 2010 Computational Materials Science 48 101
|
[43] |
Miyazaki Y, Ogawa H and Kajitani T 2004 Jpn. J. Appl. Phys. 43 L1202
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|